
Chemical Engineering Journal 420 (2021) 129845

Available online 21 April 2021
1385-8947/© 2021 Elsevier B.V. All rights reserved.

RetroPrime: A Diverse, plausible and Transformer-based method for 
Single-Step retrosynthesis predictions 

Xiaorui Wang a,1, Yuquan Li a,1, Jiezhong Qiu b, Guangyong Chen c, Huanxiang Liu d, 
Benben Liao e,*, Chang-Yu Hsieh e,*, Xiaojun Yao a,* 

a College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, PR China 
b Department of Computer Science and Technology, Tsinghua University, Beijing, PR China 
c Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen, Institutes of Advanced Technology, Chinese Academy of Sciences, 
Shenzhen, PR China 
d School of Pharmacy, Lanzhou University, Lanzhou, PR China 
e Tencent Quantum Laboratory, Shenzhen, Tencent, PR China   

A R T I C L E  I N F O   

Keywords: 
Deep Learning 
Natural Language Processing 
Template-free Single-Step Retrosynthesis 

A B S T R A C T   

Retrosynthesis prediction is a crucial task for organic synthesis. In this work, we propose a single-step template- 
free and Transformer-based method dubbed RetroPrime, integrating chemists’ retrosynthetic strategy of (1) 
decomposing a molecule into synthons then (2) generating reactants by attaching leaving groups. These two 
stages are accomplished with versatile Transformer models, respectively. RetroPrime achieves the Top-1 accu-
racy of 64.8% and 51.4%, when the reaction type is known and unknown, respectively, in the USPTO-50 K 
dataset. And the Top-1 accuracy is close to the state-of-the-art transformer-based method in the large dataset 
USPTO-full. It is known that outputs of the Transformer-based retrosynthesis model tend to suffer from insuf-
ficient diversity and high chemical implausibility. These problems may limit the potential of Transformer-based 
methods in real practice, yet few works address both issues simultaneously. RetroPrime is designed to tackle 
these challenges.   

1. Introduction 

Organic synthesis is not only an essential part of organic chemistry 
but also a cornerstone for a wide array of modern scientific disciplines 
such as drug discovery, environmental science, and materials science, 
etc. Retrosynthetic analysis is the most common method to design syn-
thetic routes by iteratively decomposing molecules into potentially 
simpler and easier-to-synthesize precursors via applying known re-
actions [1]. In recent years, with the development of artificial intelli-
gence technology, computer-aided synthesis planning (CASP) has 
further empowered chemists to contemplate even more complex mole-
cules and save tremendous amounts of time and energy from designing 
synthetic experiments [2–12]. 

At present, purely machine-learning retrosynthesis models are clas-
sified into two categories [13]: the template-based [14–16] and 
template-free [17–22] methods. A template-based algorithm extracts 
reaction templates from chemical reaction data [23,24], matches the 

subgraph in the product part of the template to a target molecule, de-
composes the target molecules as prescribed by the matched template, 
and completes the leaving group through the atomic changes indicated 
by the template to obtain the reaction precursors. Despite being inter-
pretable in terms of why certain templates are preferred, template-based 
methods can only predict reactions if corresponding templates have 
been curated in a database [14,15]. With the ever-growing list of reac-
tion templates, it is certainly desirable to contemplate alternative 
approaches. 

Template-free methods may predict chemical reactions not present 
in a training set. Chen et al. [25] have tried to study the generalization 
ability of the template-free method relative to the template-based 
method using a special data splitting approach. As a complement, in 
Supplementary Information Section S3, we present one experiment to 
support this intuition. In particular, we showed template-free methods 
perform much better in predicting reactions when the corresponding 
templates never appear in the training set. In this work, we focus on the 
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Transformer-based template-free method. 
Liu et al. [18] treated the one-step retrosynthesis as a translation 

task, using SMILES [26] to represent molecules and using an LSTM [27] 
model, a venerable tool in natural language processing (NLP), to convert 
SMILES of a product to SMILES of reactant(s). Later on, many re-
searchers [17,25,28–30] adopted a more advanced NLP model, Trans-
former [31], for predicting retrosynthesis. Transformer-based methods 
easily outperform baselines established by prior arts. Furthermore, the 
same model architecture can be directly applied for “forward predic-
tion” [32], i.e., predicting a product molecule given a set of reactants 
and reagents. In another study [30], Lee et al. showed the generaliz-
ability of the Transformer model across chemical spaces. Transformer 
not only performs well in single-step retrosynthesis but also in multi-step 
retrosynthesis. Lin et al. [17] combined Transformer and Monte-Carlo 
tree search, and re-discovers the reported retrosynthetic route of four 
molecules. Furthermore, Schwaller et al. [33] also used the Transformer- 
based model combined with hyper-graph exploration strategy to com-
plete the prediction of the multi-step retrosynthesis pathway and 
required reagents. These works greatly promote the development of 
template-free methods in the application of multi-step retrosynthesis 
planning. 

While Transformer-based models possess so many desiderata, they 
suffer from two severe shortcomings: (1) lack of diverse outputs [25], 
and (2) chemically implausible outputs. So far, these difficulties have 
not been intensively discussed in the chemistry literature and are 
partially diverted by the fact that Transformer-based models perform 
well under the metric of Top-N accuracy. However, this metrics is not 
entirely appropriate for retrosynthesis. Schwaller et al. [33] proposed a 
multifaceted evaluation scheme to replace the Top-N accuracy that 
could capture these two subtle issues to some extent. In this work, we 
still stick to Top-N accuracy to offer a consistent comparison with other 
methods reported in the literature, but we also propose strategies to deal 
with these two shortcomings. 

There are only a few studies [25,28] set out to address either of these 
two shortcomings. For instance, to reduce the number of grammatically 
invalid SMILES outputted by a Transformer, Zheng et al. [28] proposed a 
self-correction learning scheme. While this method reduces the number 
of invalid SMILES, which can be easily detected, it does not guarantee 
corrected outputs are chemically implausible reactants. In a separate 
study, Chen et. al. [25] attempted to coax a Transformer into giving 
more diverse outputs covering a broader set of reactions. This successful 
demonstration by Chen et al. is encouraging, but this work could not 
compete with the most recent single-step retrosynthesis methods in Top- 
N accuracy. Further details on these two shortcomings are elaborated in 
Section 3. 

Herein, we set out to alleviate both shortcomings while achieving an 
accuracy that is competitive with advanced models. We named our 
single-step method the RetroPrime. Following a recent trend [19,21] to 
imitate a chemist’s approach to retrosynthesis in two stages: (1) dis-
connecting a molecule at a reaction center, and (2) converting synthons 
into reactants; RetroPrime relies on two Transformers to predict reaction 
center and synthons-to-reactants, respectively. This two-stage frame-
work simplifies the complex pattern of chemical reactions for Trans-
former to learn in a divide-and-conquer manner. To enhance output 
diversity and chemical plausibility, we introduce the “mix and match” 
and “label and align” strategies in the RetroPrime workflow. To estimate 
chemical plausibility, we adopt forward reaction prediction model 
verification method, which is similar to the round-trip accuracy used by 
Schwaller et al. [33]. Details can be found in Section 2. 

In this work, we have evaluated our methods on a standard dataset 
USPTO-50 K [34] and the large-scale USPTO-full [35]. By substantially 
improving Transformer’s shortcoming while achieving great perfor-
mances, RetroPrime is a reliable tool and points out a promising direc-
tion to further develop more advanced template-free methods that, 
hopefully, may enable fully automated and data-driven retrosynthetic 
planning of complex molecules in the future. 

2. Methodology 

2.1. Bird’s-eye view 

Following chemists’ approach, we solve a one-step retrosynthesis in 
two stages. 1. Given a molecule, identify possible reaction centers and 
disconnect relevant bonds to produce synthons (P → S). 2. Transform 
synthons to reactants (S → R). Both tasks can be accomplished with 
advanced deep-learning techniques. In previous work, Shi et.al. [19] 
and Somnath et.al. [21] have used two graph neural networks to com-
plete the above two stages. Different from the above works, we employ 
the powerful Transformer model, commonly used for natural language 
processing, and integrate domain knowledge through token tagging in 
both stages to complete the single-step retrosynthesis predictions. 

In this work, we refer to the two Transformers as the product-to- 
synthons (P2S) model and the synthons-to-reactants (S2R) model, 
respectively. Fig. 1 provides a bird’s-eye view of our proposed method 
pipeline. Firstly, the P2S model tags atoms in a molecule that may 
potentially participate in a reaction. Multiple possibilities are returned 
by the P2S model. For each case, a set of synthons are converted from the 
tagged SMILES according to the rules defined in Section 2.2.1. Subse-
quently, SMILES strings for these synthons are preprocessed (explained 
in Section 2.2.2) before feeding them as input to the S2R model to 
predict possible reactants containing these synthons as substructures. 
We used the same regularization token as Schwaller et al. [36] in the 
training data processing. The parameters and training details of the 
transformer model are shown in the Supplementary Information 
Section S1. All of our methods are coded in Python 3.6. We used Open 
NMT [37] to build the transformer model and RDKit [38] to process the 
molecular structure. We open-source the code at the end of the article so 
that you can handle your own dataset using our data processing 
methods. 

2.2. Data preparation 

To train the two transformers in Fig. 1, we generate two new datasets 
(Reaction-Center dataset and Synthons-to-Reactants dataset) by pro-
cessing information derived from the publicly available reaction dataset 
USPTO-50 K, which contains ~ 50,000 records of atom-mapping re-
actions that have been classified into ten distinct reaction types [34]. 
Following other previous studies, we consider two settings for the pre-
dictive task depending on whether the reaction type for each data record 
is provided as part of the input to the model. Furthermore, we adopt the 
same training/validation/test split as reported in Coley et al. [15], 
which recommends a split of 80%/10%/10% of 50 K reactions. Table S2 
succinctly summarizes the USPTO-50 K dataset. In these new datasets, 
each data entry is prepared in the format of < source>-<output > pair, 
following the standard data format for NLP tasks. Further details on 
these datasets are elaborated thoroughly in the following sections. 

2.2.1. Reaction-Center dataset generation and augmentation 
For each atom-mapping reaction record in the USPTO-50 K, we 

analyze and tag the essential atoms of the product molecule involved in 
a reaction. The P2S model is trained to identify these tagged atoms for 
each reaction. Hence, the source of the reaction-center dataset is the 
SMILES of the product, and the target is the SMILES representing the 
same order of atoms as the input and with tags added to the reaction 
center atoms. 

Different from the forward synthesis prediction, retrosynthetic pre-
diction requires not only the correct decomposition of the product 
molecule, but also the complementation of the leaving group in many 
cases. We defined four tags based on the number of reactants (one or 
more) and the presence or absence of leaving groups (ignore the 
hydrogen atoms) by investigating the training reaction dataset. The 
definitions for these four tags are summarized below, and further details 
can be found in Fig. 2. And Table S3 shows the number of reactions 
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represented by the four types of tag.  

• Tag 1, Tag two atoms. Disconnect bond between these atoms to form 
two synthons. This type of tag represents 68.7% of reaction data of 
the whole USPTO-50 K training set. Reactions represented by this tag 
have two reactants, at least one of the reactants contains the leaving 
group, including most of the substitution reactions, simple coupling 
reactions, inter-molecular esterification reactions, inter-molecular 
amination reactions, etc. (There is no ring formation in these re-
actions). The general formula and example of these reactions are 
shown in Fig. 3.  

• Tag 2, Tag at least two atoms but generate synthons without 
breaking any bonds. The product itself is a synthon. This type of tag 
represents 5.8% of reaction data of the whole USPTO-50 K training 
set. Reactions represented by this tag have one reactant and multiple 
reaction-center atoms, including most rearrangement reactions, 
multi-site deprotection reactions (such as the deprotection reaction 
of acetals and ketals.), and intramolecular cyclization reactions, etc. 
The general formulas and examples of these reactions are shown in 
Fig. 4.  

• Tag 3, Tag one atom. The product itself is a synthon. Reactions 
represented by this tag have only one reactant, and there must be a 
leaving group. This type of tag represents 23.3% of reaction data of 
the whole USPTO-50 K training set. These reactions are mostly 
single-site deprotect reactions. The general formula and example of 
these reactions are shown in Fig. 5.  

• Tag 4, Tag multiple atoms. Disconnect bonds between these atoms to 
form at least two synthons. This type of tag represents 2.2% of re-
action data of the whole USPTO-50 K training set. Reactions repre-
sented by this tag have at least two reactants and multiple reaction 

sites, including multi-molecular cyclization and multi-component 
reactions. The general formulas and examples of these reactions 
are shown in Fig. 6. 

There always exist multiple valid SMILES to represent one molecule. 
It has been reported that NLP models, such as various RNN architectures, 
tend to perform better for applications in the molecular science when 
the dataset is augmented with the same molecules represented in mul-
tiple SMILES. In this case, we augment the Reaction-Center dataset by 
using the SMILES enumerator [39] to randomly generate nine additional 
SMILES for each canonical one. An illustration is given in Supplemen-
tary Information Fig. S2. Note that the source and the target of each 
data entry only differ by the tags attached to the reaction-center atoms 
on the target side. Table S4 provides the amount of data in the 
augmented Reaction-Center dataset. 

2.2.2. Synthons-to-Reactants dataset generation and augmentation 
According to the pipeline depicted in Fig. 1, synthons are converted 

from the product molecules by following the instructions implied by the 
tags introduced in Section 2.2.1. These synthons need to be further 
processed with labels before feeding to the S2R model. The labeling 
principle is that the reaction-center atoms (the atoms tagged in Section 
2.2.1) are marked as 1, the adjacent atoms (connected via chemical 
bonds) are marked as 2, and the remaining atoms are marked as 3. This 
is how we prepare the source (input) part of this dataset. As for the 
corresponding target (output) part, we take the reactants from the 
original USPTO-50 K dataset and furnish the SMILES with labels ac-
cording to the above principle. Additionally, the atoms of leaving groups 
are also marked as 1 for the reactants. Finally, for each synthon-reactant 
pair, we calculate the edit distance and attempt to minimize it by 

Fig. 1. Method pipeline. First, the canonical SMILES of the product is input into the Transformer P2S to obtain the product SMILES with the reaction center tag. The 
second step, if the predicted sequence is tagged with a disconnected tag then the bonds between the tagged atoms are broken to form synthons, otherwise the product 
itself is treated as a synthon. The third step, re-label the synthon(s) sequence and place the reaction center at the front of the sequence. The fourth step, input the 
synthon(s) into the Transformer S2R to predict the corresponding reactant(s). Finally, remove labels and convert reactant(s) into canonical SMILES. (<RC_i > is the 
reaction type if applicable.) 
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manipulating the target sequence in order to align the two SMILES 
strings as closely as possible. As shown in Fig. 7, after alignment, a 
typical input–output pair in the S2R dataset share a relatively large and 
identical subsequence. We called this strategy “Label and Align”. 

As shown in Supplementary Information Fig. S3, when a SMILES 
contains multiple entities, we permute the SMILES to generate addi-
tional data. For each augmented data entry, we still align the source and 
target sequences to minimize the edit distance. The amount of data in 
the augmented Synthons-to-Reactants dataset is given in Table S4. 

2.2.3. Large-scale experiments on USPTO-full 
To more comprehensively test our method, we produce the USPTO- 

full dataset from USPTO (1976-Sep2016) [35] following the cleaning 

Fig. 2. The interpretation of the reaction center tag. (a) Tag 1, Tag two atoms. Disconnect bonds between these atoms to form two synthons, (b) Tag 2, Tag at least 
two atoms but do not disconnect any bonds. The product itself is a synthon. (c) Tag 3, Tag one atom. The product itself is a synthon, there must be a leaving group, 
this tag is a non-disconnected mark and (d) Tag 4, Tag multiple atoms. Disconnect bonds between these atoms to form at least two synthons. Multi-component 
reactions also fall under this tag. 

R1 L1 R2 L2 R1 R2

H2N

O Cl

I HO
B

HO ClO

H2N
+

Reaction formula:

Reaction example:

Fig. 3. The general formula and example of the reaction represented by reac-
tion tag 1. 

R1 R2A R1 R2 A R1 R2

B
R1 R2OR R1 R2 R1 R2OR

O

O
F

F

O

F

F

Cl

OH O

Reaction formulas:

Reaction examples:

OHN

OH
N

Fig. 4. The general formulas and examples of the reaction represented by re-
action tag 2. 
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method of previous researchers [14]. There are 1,808,937 raw records in 
USPTO (1976-Sep2016). For reactions involving multiple products, we 
duplicate the same entry as many times as the number of products. In 
each copy, we remove all products but one to create additional data with 
a unique product molecule for the same reaction. We use exactly the 
same training/validation/test splits as Dai et al. [14], which contain 
80%/10%/10% of the total 1 M unique reactions. See https://github. 
com/Hanjun-Dai/GLN/blob/master/gln/data_process/clean_uspto.py 
for data cleansing and split script. 

Repeating the procedures given in USPTO-50 K dataset processing, 
we further produce the Reaction-Center dataset and the Synthons-to- 
Reactants dataset from the USPTO-full. Note, this dataset generation 
procedure includes the data augmentations described in the previous 
section. Further details of these large-scale datasets are summarized in 
Table S2-S4. 

2.3. Evaluation metrics 

The evaluation metrics we used are slightly different for the two 
stages. The essence of the P2S stage is to obtain reaction tag information. 
We sequentially extracted the tags in the predicted sequence with the 
same number of atoms of the input product, and performed preliminary 
screening according to the tag rules defined in Section 2.2.1. Finally, we 
re-labeled the tags that meet the rules into the input SMILES to get the 
results of the P2S stage, and used these results to evaluate the P2S stage. 
The evaluation method and valid prediction standard of the P2S stage 
are shown in Fig. 8. 

For the Transformer S2R, it is expected to translate synthons to re-
actants. To boost accuracy, we propose to mark atoms in order to 
facilitate the alignment of the source and target sequences for this 

RR L

O

O
N

NH

HN

NH

Reaction formula:

Reaction example:

Fig. 5. The general formula and example of the reaction represented by reac-
tion tag 3. 

RR1 R2 R
R1

R2
+ OR R1 R2 R3 R1

R2 R3++ ...+ ...

O

OHO

O

NH2N

NH2
O

O

N

N N
H

+

OH

O

OH

O HO NH2
O

O N
H

O
++

Reaction formulas:

Reaction examples:

Fig. 6. The general formulas and examples of the reaction represented by re-
action tag 4. 

Fig. 7. Label and Align. We use labeled SMILES that minimize the editing distance in the S2R stage so that the source and target SMILES have many blocks that are 
exactly the same. (<RC_i > is the reaction type if applicable.). 
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translation task. Hence, one should remove these labels and convert the 
target sequence (given by the S2R model) back to canonical SMILES 
before comparing to the ground truth for a given reaction in the USPTO- 
50 K/full dataset. 

2.4. Reaction diversity 

For predictions with unknown reaction types, we check whether 
RetroPrime can offer diverse reaction outcomes. To estimate diversity, 
we used a reaction type counting method similar to that used by 
Schwaller et al. [33]. We use a reaction type predictor [25] based on a 
typical message-passing neural network to predict the reaction type of a 
predicted reaction. Taken RetroPrime’s Top-n predictions for each test 
case, we use reaction type predictor to estimate the number of unique 
reaction types. Then we calculated the average number (Dn) of reaction 
types corresponding to the predicted reactants for each product: 

Dn =
1
I
∑I

i
Ti,n (1) 

Where Ti,n is all the reaction types included in the valid prediction 
results for one input when the Top-n prediction results are taken, and I 
is the number of products for the test. In Section 3.4, we compared the 
diversity by taking n as 10. 

In addition, through the investigation of the USPTO-50 K dataset, we 
used all the reaction data, which are different reactions but lead to the 
same product in the validation dataset and the test dataset, as the multi- 
ground-truth test set. We collected 22 groups of products with multiple 
ground truth reactants as another indicator to test and compare the 
models’ diversity. To increase the difficulty, we also tested the diversity 
of retrosynthesis models using all the multi-ground-truth data in USPTO- 
full, which has a total of 34,003 groups of products, and we call this 
dataset as multi-ground-truth USTO-full. The collection method for this 
dataset is described in Supplementary Information Section S1. Note 
that all diversity tests used model parameters obtained by training in 
USPTO-50 K under the condition of unknown reaction type. 

2.5. Mix and match 

The P2S model predicts how a molecule can be decomposed into 
simpler constituents. Various decompositions imply different chemical 
reactions. In other similar studies, one would simply take synthons for 
the Top-1 decomposition to make further predictions of reactants. 
However, we reckon that processing multiple decompositions down the 
pipeline of Fig. 1 is a simple yet highly effective method to enormously 
enhance the overall output diversity. We call this strategy “mix and 
match”. Here we present a schematic Fig. 9 to illustrate the “mix and 
match” strategy. See Supplementary Information Fig. S4 for further 
details on the “mix and match”. 

2.6. Label and align 

While preparing the S2R dataset, we meticulously minimized the edit 
distance for the input–output sequences and inserted extra labels as 
detailed in Section 2.2.2. These efforts aim to expose as much similarity 
between the source and target sequences as possible and facilitate the 
translational model’s learning to capture the chemistry behind the data. 
Indeed, the “Label and Align” strategy not only improves the Trans-
former’s overall accuracy but also decreases the number of chemically 
implausible outputs. We design experiments to provide more proof in 
Section 3.5. 

3. Results and discussion 

3.1. Challenges for translation-based retrosynthetic model 

In recent years, the sequence-to-sequence (seq2seq) based generative 
models have been widely used in the prediction of single-step retro-
synthesis because of its low requirements on data processing (for 
example, not requiring curation of atom-mapped reactions templates) 
and strong generalization ability. However, it is not an entirely error- 
free approach. Liu et al. have summarized three types of prediction er-
rors of the translation-based retrosynthesis model: [18] 

Fig. 8. The evaluation method and valid prediction 
standard of the P2S stage. After generating the tag-
ged SMILES, we first determined whether the number 
of atoms represented by the predicted SMILES is the 
same as the input. If the number of atoms is not the 
same (e.g., No.2), the prediction is invalid. If the 
extracted tag does not conform to the rules defined in 
Section 2.2.1 (e.g., No. 3), then this prediction is also 
invalid. If the tags conform to the rules (e.g., No.1 
and No.4), then these tags are extracted and rela-
beled into the input SMILES sequence to obtain the 
final prediction result.   
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(1) The SMILES for predicted reactants are grammatically invalid. 
This problem can be resolved with a simple filter. A small amount 
of invalid SMILES outputs does not pose a severe challenge.  

(2) The SMILES for predicted reactants are grammatically valid and 
chemically plausible, yet the predicted reactants are not identical 
to the ground-truth reactants specified in the dataset. This is due 
to the fact that each molecule may contain multiple reaction 
centers corresponding to multiple sets of possible reactants, but 
the dataset does not record all possible cases.  

(3) The SMILES for predicted reactants are valid, but the product- 
reactants pair does not constitute a chemically plausible reac-
tion. Nowadays, this type of error can be identified with the 
forward models [33] or judged with an in-scope filter [40,41]. 
For training the in-scope filter, the critical part is the data. We can 
easily obtain a large amount of positive reaction data, but the 
negative data are usually not recorded in the reaction database. 
In any case, these methods require additional models to judge 
whether the predicted reactions are plausible or not. It is essential 
that to explore how we can reduce this type of error generated by 
retrosynthesis models. 

The second type of error should not be viewed as a real mistake in the 
context of synthesis planning. Rather, this notion of “error” does expose 
the fact that there are always multiple valid approaches to synthesize an 
organic compound. Hence, one expects a single-step retrosynthetic 
model to enumerate as many valid options as possible. Unfortunately, 
upon close inspection, the seq2seq translation-based models do not 
exhibit much diversity in their outputs. Furthermore, they also tend to 
produce the third type of errors as shown in Fig. 10. Fig. 10a presents a 
single-stage Transformer (Referred to as S-Transformer, it will be 
introduced in the following section.)’s Top-6 recommendations of 
possible reactants for a selected molecule, while an alternative view of 
these six recommendations (in terms of SMILES which directly output by 
S-Transformer) is presented in Fig. 10b. As clearly shown in the figure, 
S-Transformer’s predictions are lack of diversity. Furthermore, many 

predicted reactants are completely unreasonable in the chemical reac-
tion sense. In order to tackle these challenges, we propose the “Mix and 
Match” and “Label and Align” strategies in RetroPrime to alleviate the 
problems of poor diversity and high chemical implausibility, respec-
tively. “Mix and Match” explicitly takes into account the different ways 
of decomposition of the products and the diverse options of the syn-
thons. “Label and Align” uses labeled tokens to distinguish and align 
reaction center and conservative groups between synthons and re-
actants. For the same example as Fig. 10, our models’ direct outputs 
process are shown in Fig. 11. After adopting the above two strategies, 
the diversity and chemical plausibility of model’s predictions can be 
significantly increased. 

3.2. Baseline 

We benchmark our method against seven baselines, which do not use 
correction methods like used by RetroXpert [22] and SCROP [28], 
including five template-free and two template-based methods. Specif-
ically, Seq2Seq [18] is a template-free approach that trains an LSTM 
model to translate the SMILES of target molecules to SMILES of re-
actants. RetroSim is a template-based method that recommends tem-
plates for target molecules based on the molecular similarity between 
the present molecule and the ones in the dataset. S-Transformer is 
similar to the Seq2Seq translation model but using a single-stage 
transformer instead of LSTM architecture at the core. G2Gs [19] and 
GraphRetro [21] are template-free approaches using graph neural net-
works to predict retrosynthesis. Under the premise of the model without 
correction methods, GraphRetro achieved state-of-the-art Top-n accu-
racy in the USPTO-50 K dataset. GLN [14] is a template-based method, 
which samples templates and reactants jointly form a distribution 
learned by a conditional graphical model. AT [42] is a state-of-the-art 
transformer-based single-step retrosynthesis model, which adopts a 
very effective data augmentation strategy. 

Fig. 9. Mix and Match. We select the rank 1–3 synthons predicted by Transformer P2S and send them to Transformer S2R to predict the reactants, and the obtained 
results are alternately combined. Use the re-rank approach to rank invalid SMILES at the end. 
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3.3. Top-N accuracy 

We evaluated the method in two datasets, USPTO-50 K and USPTO- 
full, which contain ~ 50000 and ~ 1 M reaction data, respectively. For 
the USPTO-50 K dataset, our results are presented in Table 1. Our 
method achieves the Top-1 accuracy of 64.8% and 51.4% when the 
reaction type is known and unknown, respectively. It can be seen from 
the table that RetroPrime is completely superior to these two models, 
Seq2Seq and S-Transformer, which only use canonical SMILES to ex-
press molecules. Compared to the template-based methods, except for 
the Top-10 accuracy when the reaction type is known, RetroPrime is far 
more accurate than RetroSim and competes with GLN. It is worth noting 
that template-based methods perform well at Top-10 accuracy because 
template-based methods are not limited to predicting similar reaction 
precursors, and the depth search approach (Top-n, n ≥ 10) is conducive 
to finding the reaction precursors recorded in the dataset. Compared 
with the graph-based template-free methods, RetroPrime is entirely 
superior to G2Gs when the reaction type is unknown. And its accuracy in 
Top-1 and Top-3 is also better than G2Gs when the reaction type is 
known. GraphRetro is very well designed at capturing and learning 

representations on small dataset, achieving the state-of-the-art perfor-
mance on USPTO-50 K. AT applies the multiple effective data 
augmentation strategies to achieve great performance on the 
transformer-based models, which indicates that how to effectively and 
completely express the molecular structure information is very impor-
tant for the accuracy of prediction. 

The performance of each method in the noisier USPTO-full dataset is 
shown in Table 2. The performance of RetroPrime is close to AT, and the 
Top-1 accuracy is 44.1%. It is worth noting that S-Transformer trained 
using only canonical SMILES also significantly outperforms the 
template-based method GLN in this dataset, showing the transformer- 
based approach’s advantages in the noisy dataset. In addition, we also 
list these two separate stages Top-N accuracy of RetroPrime in Table S5 
and S6. 

3.4. More diverse predictions 

We also investigate whether our method provides outputs covering a 
broad range of chemical reactions. This is crucial if these single-step 
predictors were to be integrated into a multi-step retrosynthetic route 

Fig. 10. (a) Visualization of a set of pre-
dicted results selected from S-Transformer 
test dataset. The first row contains the input 
molecule and the ground truth reactants in 
the dataset, the second row and the third row 
are the Top-6 predicted results. In this 
example, we can observe that S-Transformer 
predicts that one of the reactants is exactly 
the same as the ground truth reactant, and 
the other reactant is very similar to the 
ground truth reactant, but the atomic 
changes on the conjugated membered ring 
makes the results completely unreasonable. 
(Top-1 hits the ground truth reactants.) (b) 
Visualization of the sequence directly output 
by the S-Transformer. The results show that 
most part of the sequences predicted by the 
S-Transformer are the same, and the model 
did not capture the reaction center and con-
servative groups of the molecule in the 
chemical reaction. In most cases, different 
parts of the predicted sequence often lead to 
chemically implausible results, rather than 
diversification.   

X. Wang et al.                                                                                                                                                                                                                                   



Chemical Engineering Journal 420 (2021) 129845

9

Fig. 11. The two stages of RetroPrime directly output sequence display. Top black box shows the tagged results of the two types of reaction centers directly predicted 
by the P2S stage. Middle black box shows the sequences representing the two sets of synthons. (These two sequences are displayed in different colored boxes.) The 
tokens marked with red are reaction center atoms, which are fixed at the forefront of the sequence representing a structure. Bottom black box shows the sequences of 
the direct output of the model in the S2R stage, which are the combination of two synthons corresponding results (Top-6). The tokens marked with blue indicate the 
predicted leaving groups, while the red tokens are still the reaction center. “Mix and match” can increase diversity. “Label and align” can enhance the conservative 
groups relationship between synthons and reactants, thereby improving the chemical credibility of predictions. Corresponding molecular pictures are shown in 
Supplementary Information Fig. S5. 

Table 1 
USPTO-50 K dataset Top-N exact match accuracy.  

Methods Top-N accuracy % 

Reaction type known Reaction type unknown 
1 3 5 10 1 3 5 10 

Seq2Seq [18] 37.4 52.4 57.0 61.7 – – – – 
RetroSim [15] 52.9 73.8 81.2 88.1 37.3 54.7 63.3 74.1 
S-Transformer  

[30] 
57.3 71.6 75.2 78.0 43.5 59.2 63.9 68.2 

G2Gs [19] 61.0 81.3 86.0 88.7 48.9 67.6 72.5 75.5 
GLN [14] 64.2 79.1 85.2 90.0 52.5 69.0 75.6 83.7 

RetroPrime 64.8 81.6 85.0 86.9 51.4 70.8 74.0 76.1 
AT [42] – – – – 53.2 – 80.5 85.2 

GraphRetro [21] 67.8 82.7 85.3 87.0 63.8 80.5 84.1 85.9  

Table 2 
USPTO-full dataset Top-N exact match accuracy when the reaction type is 
unknown.  

Methods  Top-N accuracy % 

N 1 3 5 10 

RetroSim [15]   32.8  –  –  56.1 
GLN [14]  39.3  –  –  63.7 

S-Transformer [30]  42.9  58.1  61.0  66.8 
RetroPrime  44.1  59.1  62.8  68.5 

AT [42]  46.2  –  –  73.3  
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planning. As the setting of unknown-reaction-type is more natural for 
this purpose, we choose this setting and compare our method against the 
S-Transformer (as both approaches mainly use Transformer to make 
predictions). This diversity estimation, based on the metrics (top-10 
average reaction type D10) introduced in Section 2.4, is shown in 
Table 3. 

In addition, we used a multi-ground-truth test set to compare Ret-
roPrime and S-Transformer’s ability to predict multiple correct answers 
at the same time. Retroprime can completely match 77% (17 groups) of 
results, and S-Transformer can match 32% (7 groups). All 22 products 
can be found at least one correct reaction pathway by two methods. (The 
standard of “completely match” is that all correct reactants appear in the 
Top-10 prediction results of the model.) An example of the complete 

match is shown in Fig. 12. In the more difficult multi-ground-truth 
USPTO-full, RetroPrime can completely match 6.74%, which is also 
higher than S-Transformer’s 4.28%. In addition, RetroPrime can find at 
least one correct reaction pathway for 46.16% of the test products, while 
S-Transformer only found 40.86%. The results show that, compared 
with S-Transformer, our method can still find multiple correct reaction 
pathways for products more effectively in this dataset, even when there 
are few data of multi-ground-truth in the training set. (See Supple-
mentary Information Section S1 for detailed test results on multi- 
ground-truth reaction data.) 

Our method can also generate more diversified prediction results for 
target molecules that do not belong to the multi-ground-truth reaction 
data. As shown in Fig. 13, We visualized the prediction results of Ret-
roPrime and S-Transformer for some products of multiple reaction 
centers to demonstrate that RetroPrime can predict more diverse results. 
See Supplementary Information Section S2 for more similar examples. 
The more diverse prediction results of Retroprime are due to the mix and 
match of Top-3 synthons results. 

3.5. The effects of the “Label and Align” strategy 

Recall that we did two things while building the S2R dataset. We 

Table 3 
Average number of Reaction types between S-Transformer and Retro-
Prime on USPTO-50 K dataset when the reaction type is unknown. 
(Top-10).  

Methods Avg. Reaction Type (D10) 

S-Transformer [30]  1.74 
RetroPrime  2.40  

Fig. 12. An example of completely match in multi-ground-truth reaction data. In this example, two different reactions lead to the same product, Retroprime matched 
two ground truth results in the first and second place of the predicted results, and S-Transformer only matched one. 
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align input–output sequences and mark atoms with extra labels. In this 
section, we attempt to elucidate the benefits these efforts provide. 

We designed experiments to clarify the benefits of these efforts. In 
this experiment, we train a modified Transformer that is asked to 
translate synthons to targets in canonical SMILES, i.e., without sequence 
alignments and labels. Table 4 compares the original experiment’s 
(Label and Align S2R) outcome (as depicted in Fig. 1) and the new 
experiment with the S2R model replaced with this newly trained one 
(Canonical Smiles S2R). The results of Top-1 of the RetroPrime (Label 
and Align S2R) are 4.6% more accurate than the RetroPrime (Canonical 
Smiles S2R). This accuracy gain for the Top-1 result is 3.0% when the 
reaction type is unknown. Moreover, the accuracy gap widens between 
the two experiments when the comparison is expanded to consider Top- 
10 results, which is 5.7% and 3.6%, respectively, when the reaction is 
known and unknown. 

In addition to increasing Top-N accuracy, we further elaborate on 
more subtle effects brought upon by the labels. It is easy to corroborate 

that not all outputs of grammatically valid SMILES by a Transformer 
model are chemically plausible, i.e. the input–output pair does not 
constitute a valid chemical reaction. 

To estimate how many chemically implausible but grammatically 
valid SMILES are outputted by RetroPrime, we propose to use a forward 
reaction predictor to diagonalize potential errors. This verification 
method is similar to the round-trip accuracy used by Schwaller et al. 
[33]. In short, we feed the predictions results (i.e. reactants) of retro-
synthetic method to a forward reaction prediction model, the Molecular 
Transformer [32]. If the forward model predicts correct product mole-
cule at Top-1 results, the retrosynthesis is deemed successful. We refer to 
this metric as the forward check plausibility of the retrosynthesis model. 
Without taking into account of chirality, the USPTO-MIT mixed version 
of the Molecular Transformer reaches 88.6% [32] for the Top-1 accu-
racy. Although it is not absolutely accurate to use Molecular Trans-
former to check the chemical plausibility of the predicted reactants, the 
inspection results are highly correlated to the chemical plausibility. This 

Fig. 13. Comparing the predictions of RetroPrime and S-Transformer when the reaction type is unknown. (a) The ground truth results in this example can be 
predicted by both RetroPrime and S-Transformer. The difference is that RetroPrime gives three different disassembly methods. The first two S-Transformer 
dismantling methods are the same except for halogen atoms, and the last prediction of the S-Transformer incorrectly predicted a thiophene ring instead of a benzene. 
(b) Retroprime not only correctly matched the ground truth result, but also recommended two additional reactions, reduction and nucleophilic substitution. S- 
Transformer did not match the ground truth. It only predicted the reduction reaction, and the other two predictions are chemically implausible. 

Table 4 
Compare the Top-N accuracy of the two methods in the S2R stage. The same reaction type input configuration uses the same P2S model.  

S2R Methods  Pipeline Top-N accuracy % 

Reaction type known Reaction type unknown 

N 1 3 5 10 1 3 5 10 

Label and align   64.8  81.6  85.0  86.9  51.4  70.8  74.0  76.1 
Canonical smiles  60.2  75.2  78.8  81.2  48.4  66.2  70.0  72.5  
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approach is designed to provide a lower bound guarantee. 
Results of this scrutiny on the chemical plausibility of our method are 

summarized in Table 5. Recall that our test set consists of 5,006 cases. 
For each case, we took the first ten results (Top-10) predicted by the 
retrosynthesis model to perform the forward check, that is, we entered 
50,060 results into the forward model to test the chemical plausibility. 

Based on these results, RetroPrime (Label and align S2R) yields slightly 
more grammatically invalid SMILES in comparison to RetroPrime (Ca-
nonical Smiles S2R) in which the S2R model is trained with input–output 
pair given in canonical SMILES without extra labels. However, the po-
tential number of chemically implausible cases is significantly reduced 
for our proposed method regardless of whether the reaction type is given 
as part of the input. In addition, as shown in Fig. 14, we provide a visual 
example to show what the “label and align” strategy works. The “label 
and align” strategy allows the model to learn how to maintain the 
relationship between the synthons and the predicted reactants’ sub-
graph (conservative group) to reduce chemically implausible pre-
dictions. The corresponding sequences for this example are shown in 
Supplementary Information Fig. S6. 

Clearly, our two-stage method has significantly ameliorated this 
deficiency of the rudimentary workflow using a single Transformer in an 
end-to-end fashion that directly translates a product molecule into a 
batch of reactants. 

Table 5 
Compare the forward check forward check plausibility in USPTO-50 K test 
dataset prediction Top-10 results.  

Methods All 
predictions 

Reaction 
Type 

Grammatically 
valid predictions 

Forward 
Check 

Plausibility % 
RetroPrime 

(Label and 
align S2R) 

50,060 Known 48,053 45.2 
Unknown 49,786 46.8 

RetroPrime 
(Canonical 
smiles S2R) 

Known 48,637 33.7 
Unknown 49,790 42.0 

S-Transformer 
[30] 

Known 47,121 32.9 
Unknown 48,004 36.4  

Fig. 14. The effects of “Label and align” strategy. 
The green box shows the three synthons predicted by 
the P2S model. The black box shows the reactants 
corresponding to the three synthons predicted by the 
S2R model using the “label and align” strategy. The 
red box shows the reactants corresponding to the 
three synthons predicted by the S2R model without 
the “label and align” strategy. In both the left and the 
middle examples, the model with the two strategies 
can predict the same reactants, which can correspond 
to the synthons. But in the right example, the pre-
diction from the model without the “label and align” 
strategy does not correspond to the synthons and is a 
chemically implausible result, while the prediction 
from the model with the “label and align” strategy 
does not show this error. The corresponding se-
quences for this example are shown in Supplemen-
tary Information Fig. S6.   
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3.6. Limitation 

Similar to several recent works based on two-stage single-step ret-
rosynthesis methods [19,21], this work relies on high-quality atom- 
mapping reaction dataset to extract reaction centers. Earlier, the reac-
tion atom-mapping labeling method combines graph theory methods, 
heuristic methods, and rule-based methods, but many quality issues still 
exist. In the open-source reaction dataset that relies on the above atom- 
mapping methods, especially in USPTO-full, the atom-mappings are not 
reliable in many cases, which leads to problems in the downstream 
retrosynthesis model trained on these atom-mapping datasets. Using 
more reliable atom-mapping algorithms is a way to alleviate the quality 
problem of dataset. With the development of deep learning technology, 
automatic atom-mapping algorithms are becoming more and more ac-
curate and reliable in recent years. For example, Schwaller et al. pro-
posed a method to extract hidden atom mapping information from an 
unsupervised model trained on unlabeled data [43], which can provide 
more high-quality atom-mapping reaction data, thereby improving the 
prediction quality of the retrosynthesis model. 

In addition, although this work merges the predictions correspond-
ing to multiple synthons, which effectively improves the diversity of 
model predictions, the fusion approach could be achieved in a learnable 
way. This is also one of the directions for our future work to be 
improved. 

4. Conclusion 

In summary, we propose a new Transformer-based method, Retro-
Prime, to tackle retrosynthesis. In the standard USPTO-50 K dataset, 
when the reaction type is known and unknown, RetroPrime’s Top-1 
accuracy reached 64.8% and 51.4%, respectively. In the large dataset 
USPTO-full, RetroPrime achieved the Top-1 accuracy of 44.1%, which is 
significantly higher than the template-based method, and is close to the 
state-of-the-art Transformer-based method AT. These encouraging re-
sults seems to concur with an earlier observation [30] that Transformer- 
based predictions possess excellent generalizability and robustness. 

However, it is easy to show that Transformer suffers from two severe 
deficiencies: (1) lack of reaction diversity and (2) high percentage of 
chemically implausible solutions. Without further improvements on 
these two issues, one cannot trust Transformer’s outputs beyond the first 
few ones. In this work, we make conscious efforts to deal with these 
challenges by proposing the “mix and match” and the “label and align” 
strategies as part of RetroPrime’s two-stage workflow, inspired by a 
chemist’s approach to retrosynthesis. The results show that our “mix and 
match” strategy can significantly improve the diversity of the model, 
and the “label and align” strategy could also reduce the proportion of 
chemically implausible prediction results. While improvements are 
substantial as reported, further innovations are urgently desired. 

Given vast amount of chemical reaction data and new knowledge are 
generated on a daily basis, the benefits of building a reliable template- 
free method are obvious. Hopefully, without having to be explicitly 
trained on all reaction templates, these modern machine-learning 
methods can generalize more easily and guide us toward better syn-
thetic routes. 
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