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Abstract

Accurate prediction of atomic partial charges with high-level quantum mechanics (QM) methods suffers from high computational
cost. Numerous feature-engineered machine learning (ML)-based predictors with favorable computability and reliability have been
developed as alternatives. However, extensive expertise effort was needed for feature engineering of atom chemical environment,
which may consequently introduce domain bias. In this study, SuperAtomicCharge, a data-driven deep graph learning framework,
was proposed to predict three important types of partial charges (i.e. RESP, DDEC4 and DDEC78) derived from high-level QM
calculations based on the structures of molecules. SuperAtomicCharge was designed to simultaneously exploit the 2D and 3D
structural information of molecules, which was proved to be an effective way to improve the prediction accuracy of the model.
Moreover, a simple transfer learning strategy and a multitask learning strategy based on self-supervised descriptors were also
employed to further improve the prediction accuracy of the proposed model. Compared with the latest baselines, including one GNN-
based predictor and two ML-based predictors, SuperAtomicCharge showed better performance on all the three external test sets
and had better usability and portability. Furthermore, the QM partial charges of new molecules predicted by SuperAtomicCharge
can be efficiently used in drug design applications such as structure-based virtual screening, where the predicted RESP and
DDEC4 charges of new molecules showed more robust scoring and screening power than the commonly used partial charges.
Finally, two tools including an online server (http://cadd.zju.edu.cn/deepchargepredictor) and the source code command lines
(https://github.com/zjujdj/SuperAtomicCharge) were developed for the easy access of the SuperAtomicCharge services.
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Graphical Abstract
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Introduction
Accurate prediction of atomic partial charges is an essen-
tial step for biochemical and biophysical computations,
such as in conformational searches, molecular docking
and molecular dynamics (MD) simulations [1]. Atomic
partial charges can describe the electrostatic potentials
of molecules and intermolecular electrostatic interac-
tions [2]. Normally, high-quality quantum mechanics
(QM) calculations provide the most reliable way to
estimate the partial charges of small molecules, such as
the restrained electrostatic potential (RESP) [3] algorithm
by fitting the electrostatic potentials computed by high-
quality QM calculations [4], but they are too time-
consuming to process a large number of molecules
for virtual screening [5]. With the aim of minimiz-
ing computational cost, some compromised methods
represented by non-QM empirical methods such as
Gasteiger charge [6] or semi-empirical QM methods such
as AM1-bond charge correction (BCC) charge [7] were
developed [8]. However, such compromised methods with
high computability may correspondingly suffer from
discounted prediction accuracy. Therefore, it is desirable
to develop methods that can well handle the tradeoff
between accuracy and computability in the estimation
of atomic partial charges.

To this end, a myriad of machine learning (ML)-
based charge predictors has been developed for fast and
accurate predictions of partial charges [1, 5, 8–14]. In

a simplistic view, they can be divided into two major
categories: traditional ML-based predictors and deep
learning-based predictors. In the first category, each
atom was described by a fixed-length vector and an
arbitrary subsequent learner can be employed to extract
charge assignment rules from the training vectors. The
contents of the vector can vary from one to another. In
2013, Rai et al. adopted symmetry functions consisting
of 77 radial components and 49 angular components
to describe the surrounding chemical and geometric
environments of atoms [12], and random forest (RF) was
employed to construct the partial charges assignment
model. The prediction on the test set with 5000 molecules
reached a mean unsigned error of 0.03 e. Similarly, in
2018, Bleiziffer et al. employed RF to predict the density
derived electrostatic and chemical (DDEC) charges of
different elements including C, H, N, O, S, P, F, Cl, Br and I
[5], but differently, only 2D-based topological descriptors
were used in modeling. Finally, the RF model achieved
R-square (R2) of 0.983 and 0.997 for the two external
test sets, respectively. Based on the atom type symmetry
function (ATSF), Wang et al. also developed an RF model
to predict the conformational adaptive (CA) charges
and dipole moments of furanoses [14]. The results
indicated that the CA charges predicted by the RF model
based on ATSF are superior to the ensemble-averaged
atomic charge sets commonly employed in molecular
mechanics force fields. For many years, traditional
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ML-based partial charges predictors were caught in the
feature engineering paradigm where accurate represen-
tations of atoms are the most important component
of predictors. To better represent the geometric and
chemical environments of atoms, Wang et al. developed
the atom-path-descriptor (APD) descriptors that can
represent the 2D and 3D structural information of
the atoms in a molecule simultaneously [9], and the
application of the APD descriptors using two popular
algorithms including RF and eXtreme Gradient Boosting
demonstrated that it can give better predictions for all
types of atoms than those based on traditional molecular
fingerprints.

There is no denying that traditional ML-based partial
charge predictors have achieved nontrivial performance
improvement in terms of both accuracy and efficacy.
However, some points for this kind of methods are natu-
rally inferior. First, the predefined atomic representations
or descriptors may introduce bias of domain expertise
and cannot consider all possibilities. Second, each atom
was treated as an individual training sample and such
treatment could cause tremendous inefficiency in com-
putation where tens of thousands of molecules could
entail millions of atoms. Third, different elements gen-
erally share different predictors even under the same
algorithm and that is not a practical way in real-life
applications. Therefore, there is a great demand for the
development of improved computational models with
affordable computability and high accuracy.

Molecular graphs consisting of a series of vertexes
(atoms) and edges (chemical bonds) are the natural and
effective representations for chemical molecules [15],
and the graph neural network (GNN) can be employed
to extract any level of representations including node-
level, edge-level and graph-level for molecular graphs
[16]. For atomic partial charges predictions, GNN can
be one of the best ML architectures based on the
following facts: first, the basic principles of GNN fall
into neighboring information aggregation for central
atoms through graph convolution, and this process can
be achieved by automatically learning the surroundings
for central atoms. In this manner, an atomic partial
charges prediction task can be naturally converted into
a node-level task on molecular graphs. Second, GNN
is an end-to-end architecture where it is capable of
automatically extracting task-specific features without
any predefined rule or domain expertise. Third, the
graph representations of molecules can well evade
the individual atom treatment style in traditional ML-
based predictors and acquire unrivalled computational
efficiency. To this end, Wang et al. recently developed the
first GNN-based model named DeepAtomicCharge for
predicting the DDEC charges of small molecules with
different dielectric constants [8]. Although DeepAtomic-
Charge exhibits better accuracy and computability in
comparison with traditional ML-based models, it may
still need further improvement. First, the construction
of DeepAtomicCharge mainly considered the basic

chemical information. However, atomic partial charges
are conformationally dependent [2] and the properties of
atoms can be critically governed by the spatial distances
and directions between atoms in 3D space [17]. Second,
only fixed-length molecules (with the same number of
atoms) can be handled and the maximum number of
atoms was limited to 65 in DeepAtomicCharge. When
facing with different length of molecules, the extra fake
atom padding technique was needed, which is not an
efficient way in computation.

In this study, we proposed a novel and efficient deep
graph learning framework named SuperAtomicCharge
to predict the atomic partial charges directly from
the 3D structures of molecules (Figure 1). In Super-
AtomicCharge, both the 2D chemical information and
3D structural information of molecules were covered
in model development, which was demonstrated as
an effective way in improving the prediction accuracy
of model. Then, a simple transfer learning strategy
and the multitask learning strategy based on self-
supervised descriptors were used to further improve
the model’s performance. The testing on the three
kinds of partial charges including the DDEC4 (ε = 4),
DDEC78 (ε = 78) and RESP charges demonstrated that
SuperAtomicCharge outperformed the latest GNN-
based predictor and ML-based predictors. Moreover,
the predicted QM partial charges of new molecules by
SuperAtomicCharge gained superior scoring power and
screening power than the commonly used partial charges
in the applications of structure-based virtual screening.
Finally, two different tools including the source code
command lines (https://github.com/zjujdj/SuperAtomi
cCharge) and the online server (http://cadd.zju.edu.cn/
deepchargepredictor) were developed for the easy use of
the SuperAtomicCharge services.

Materials and methods
Collection of datasets
A total of ∼130 000 organic small molecules with three
kinds of partial charges including DDEC4 (ε = 4), DDEC78
(ε = 78) and RESP were used to construct the Super-
AtomicCharge models. Those molecules were collected
from the study of Bleiziffer et al. [5] The first two kinds of
partial charges [i.e., DDEC4 (ε = 4) and DDEC78 (ε = 78)]
calculated at high-level QM computation reported by
Bleiziffer et al. were directly used in this study. Here,
the dielectric constant ε = 4 was employed to model
partial charges in protein environment and ε = 78 was
aimed to model partial charges in solvent environment.
Because no RESP charges were available for those organic
small molecules, all the molecules in the dataset were
optimized using the semi-empirical method (AM1) first
[7], and then the RESP fitting algorithm based on the
electrostatic potentials estimated at the Hartree Fock
self-consistent field (SCF)/6 G-31G∗ level [18] in Gaus-
sian16 program was utilized to calculate the correspond-
ing RESP charges for each molecule.
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Figure 1. The detailed descriptions of the SuperAtomicCharge architecture and corresponding applications.

SuperAtomicCharge formalism
In this section, we will elaborate on three key compo-
nents in the SuperAtomicCharge model including input
representation, node representation learning module
and feed-forward neural network (FNN).

Input Representation with Chemical and 3D Struc-
tural Information: In this section, each small molecule
was represented as a bidirected graph (G = (V, E)) with
the explicit existence of hydrogen atoms, and (i, j ) ∈ E
indicates that there exists a bond between atoms i and
j [in (i, j), atom i is the source atom and atom j is the
destination atom, and vice versa]. Due to the bidirec-
tional essence of the graph in this study, (j, i) ∈ E is
another opposite edge between atoms i and j. All the
small molecules were processed into the corresponding
bidirected graphs with node features and edge features
(Table 1). As shown in Table 1, different from the compli-
cated atom descriptors reported in previous studies [5,
9, 12], only several basic atom features were considered
in the graph representation. In terms of edge features,

the basic bond features were also considered. As for
the spatial distances and directions between atoms in
3D space may govern the properties of atoms, another
set of 3D-related edge features were considered. Those
edge features including distance, angle and area statis-
tics were employed to describe the geometric environ-
ments of atoms [19]. The detailed calculation algorithm
of this set of edge features is formulized in Table S1, and
another detailed example is shown in Figure 2A.

Node Representation Learning with Graph Convolu-
tion: This module was designed based on the studies
reported by Xiong et al. [20] and Wang et al. [8], and it was
intended to automatically learn the node representations
of atoms under the message passing framework. The
learned node representations were used as the inputs
of the subsequent FNN module for partial charge pre-
dictions. At each time step t, the inputs of this module
are a series of node states from the last time step t − 1.
Here, the node states in time step 0 were acquired by
the following steps that both consider the initial atom
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Table 1. The detailed descriptions of the node/edge features used in graph representation

Features Type Attributes name Descriptions Length

Node Features 2D atom_type_one_hot One hot encoding for atom type ([‘C’, ‘N’, ‘O’, ‘S’, ‘F’,
‘P’, ‘Cl’, ‘Br’, ‘I’, ‘B’, ‘H’, ‘Si’, ‘Other’])

13

atom_degree_one_hot One hot encoding for the degree of an atom (Atom
degrees to consider: 0–5)

6

atom_formal_charge The formal charge for an atom 1
atom_num_radical_electrons The number of radical electrons for an atom 1
atom_hybridization_one_hot One hot encoding for the hybridization of an atom

(‘SP’, ‘SP2’, ‘SP3’, ‘SP3D’, ‘SP3D2’, ‘Other’)
6

atom_is_aromatic Whether the atom is aromatic 1
atom_total_num_H_one_hot One hot encoding for the total number of Hs of an

atom (Total number of Hs to consider: 0–4)
5

atom_chirality_one_hot One hot encoding for chirality of an atom ([‘R’, ‘S’,
‘Other’])

3

Edge features 2D bond_type_one_hot One hot encoding for the type of a bond ([‘SINGLE’,
‘DOUBLE’, ‘TRIPLE’, ‘AROMATIC’])

4

bond_is_conjugated Whether the bond is conjugated 1
bond_is_in_ring Whether the bond is in a ring of any size 1
bond_stereo_one_hot One hot encoding for the stereo configuration of a

bond ([‘STEREONONE’, ‘STEREOANY’, ‘STEREOZ’,
‘STEREOE’, ‘Other’])

5

Edge features 3D Distance the Euclidean distance between to connected atoms
in 3D space

1

Angle statistics The scaled max, sum, and mean values of angle
between atoms i, j, k in 3D space

3

Area statistics The max, sum, and mean values of areas between
atoms i, j, k in 3D space

3

Distance statistics The scaled max, sum, and mean values of distances
between atoms i, k in 3D space

3

and edge features simultaneously. For each atom i, the
unnormalized attention score sij from certain bonded
atom j was computed based on the initial edge features
eij and initial atom features xi and xj according to:

sij = σ1
(
w3

[
σ1

(
w1xj

) ‖ σ1
(
w2

[
xi ‖ eij

])])
(1)

where w1, w2, w3 are different learnable matrix, and σ1

is the LeakyReLU activation function. To make the atten-
tion score easily comparable across the bonded atoms,
unnormalized attention score was normalized across all
the bonded atoms N(i) using the softmax function to get
the normalized attention score αij:

αij = softmax(sij) = exp(sij)∑
kεN(i)

exp(sik)
(2)

Then, atom i aggregates the information across its
bonded neighbors weighted by αij:

mi = σ2

(∑
kεN(i)

αikw4σ1(w2[xi ‖ eik])
)

(3)

where the calculation of term σ1(w2[xi ‖ eik]) is kept as
the same with Equation (1); w4 is the learnable matrix,
and σ2 is the exponential linear unit activation function.
Finally, the initial node state h0

i in time step 0 for atom
i was computed as:

h0
i = σ3 (GRU (mi, σ1 (w1xi))) (4)

where σ3 is the rectified linear unit activation function, and
a gated recurrent unit (GRU) was used to fuse mi and the
transformed term σ1(w1xi) of the initial atom features
xi into the initial node state for each atom. Afterwards,
for each time step t, the node states were calculated
according to previous node states under the message
passing framework (Figure 2B), and the message function
[Equations (5) and (6)] and vertex update function [Equa-
tion (7)] were defined as follows:

For t in {1, . . . , T − 1}:

st
ij = σ1

(
wt

1

[
ht−1

i ‖ ht−1
j

])
(5)

mt
i = σ2

(∑
kεN(i)

αt
ikwt

2ht−1
k

)
(6)

ht
i = BN

(
σ3

(
GRU

(
mt

i , ht−1
i

)))
(7)

where the calculation of normalized attention score αt
ik

is similar to Equation (2) based on st
ij. BN is a batch

normalization operation with the aim of accelerating
model training, and wt

1and wt
2 are the learnable matrix

in each time step. Finally, we summed the node states in
each time step to get the final node representation hT

i for
each atom:

hT
i =

T−1∑
t=1

ht
i (8)

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab597/6513729 by N

ational Science & Technology Library R
oot Adm

in user on 24 January 2022



6 | Jiang et al.

Figure 2. (A) The visualization example of the calculation of the 3D edge features including distance, angle, and area statistics. (B) The detailed
descriptions of message passing including pair concatenation, attention score calculation, message aggregation and node state update.

Feed-forward Neural Network (FNN): Normally, tradi-
tional ML-based methods would develop different pre-
dictors for different elements. For simplicity, all the ele-
ments share the same FNN predictor to reduce model’s
complexity in this study. The inputs of this module are
the node representation hT

i of each atom. Here a two
hidden layer FNN was used and the training objective is
to minimize the loss function (mean squared error (MSE)
loss) among all the training atoms. Given a dataset with
N atoms, the predicted and true values of a certain atom
are ŷi and yi, respectively. The loss function is defined as:

L = 1
N

N∑
i=1

(
yi − ŷi

)2 (9)

Details of model training and evaluation
The SuperAtomicCharge model was implemented with
the open-source DGL-CUDA90 (version: 0.4.3.post2) with
PyTorch as the backend and RDKit (version: 2019.09.1)
python package. For the three datasets, each dataset
was divided into the training, validation and test sets
at the ratio of 8:1:1. The validation set was used for
model section and the test set was used to validate the
generalization ability of the model. All the experiments
in this study share the same hyperparameters as

shown in Table S2. In addition to the commonly used
dropout and L2 regularization trick, early stopping was
further considered for avoiding overfitting if no improve-
ment of the validation performance was achieved in
successive 50 epochs. For comparison, three latest
methods including the GNN-based DeepAtomicCharge
[8], atom–path–descriptor–based random forest (APD-RF)
[9] and atom-pair fingerprint-based RF model (AP-RF) [5]
were used as the baselines. For the sake of fairness, all
the compared models were evaluated on the same data
folds used in this study. Each experiment was repeated
three times with different random seeds and the average
performance with standard deviation was reported.

As for the evaluation metric, root mean square error
(RMSE) is the main indicator. In a more diverse evalua-
tion, Pearson correlation coefficient (Rp), mean absolute
error (MAE) and R2 were also reported.

Transfer learning strategy
Transfer learning falls into the conception ‘learn to learn-
ing’ and it can be considered as a collection of ML meth-
ods that can gain generalizable knowledge from related
tasks (source tasks) to enable learning of target tasks
with data scarcity property [21–23]. Different from other
transfer learning scenarios where the target tasks are

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab597/6513729 by N

ational Science & Technology Library R
oot Adm

in user on 24 January 2022

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab597#supplementary-data


Out-of-the-box deep learning prediction | 7

usually lack of data volume and correspondingly the pre-
training strategy is commonly used [23–25], here the end-
point properties of our three datasets were similar. There-
fore, a simple but efficient ‘model fine tuning’ strategy
was used. In a more specific way, for each available
model pair (source task model/target task model), we
used the parameters from the well-trained source model
to initialize the target task model and subsequently fine-
tune the target task model, which can be regarded as the
process that the target task model was optimized starting
from the knowledge extracted from the source task, and
therefore it is quite possible for the target task model
to find more generalized answers in the tremendous
solution space compared with random initialization. In
the fine-tuning of the target task model, two kinds of
strategies were used: the first is global tuning where all
the parameters of the target model share the same learn-
ing rate (1.0 × 10−03), and the second is local tuning where
the parameters from the graph convolution layers share
small learning rate (1.0 × 10−05) but the parameters from
the FNN layers share normal learning rate (1.0 × 10−03). In
the transfer learning process, the transfer learning model
was trained three times. Finally, the average performance
with standard deviation was reported.

Validation of the proposed model in actual drug
design issues
To test the performance of the SuperAtomicCharge
model in practical drug design applications, we assessed
the performance of the RESP and DDEC4 charges pre-
dicted by SuperAtomicCharge on two important metrics
(scoring power and screening power) in structure-based
virtual screening [26]. Here the DDEC78 charges are
usually used to characterize the electrostatic effects of
a molecule in bulk solvent, and therefore we did not
evaluate the performance of this type of atomic charges
in drug design applications (usually are protein systems).
The scoring power was evaluated by the PDBbind dataset
[27] containing ∼1300 protein–ligand complexes and the
screening power was evaluated using two drug targets
i.e. caspase 8 and Farnesoid X Receptor (FXR). The more
descriptions about scoring power and screening power
evaluations are available in the Supporting Information.

Results and discussion
Inclusion of 3D structural information and
transfer learning did improve the performance of
SuperAtomicCharge
It is a common sense that the spatial distances and
directions between atoms in 3D space can determine
the nature of molecules [17]. However, many proposed
methods for partial charge predictions only rely on 2D
topological information [5, 8]. In the light of this, we
checked whether the inclusion of 3D structural informa-
tion can improve the performance of SuperAtomicCha-
rge using a straightforward comparative study (Table 2).
All the 3D edge features were removed and then the

model was trained correspondingly with the same pro-
cedure. As shown in Table 2, it is obvious that the inclu-
sion of the 3D structural information is beneficial to
the prediction accuracy of SuperAtomicCharge. For the
DDEC4 charges, the inclusion of the 3D structural infor-
mation can improve the performance by ∼7% points,
and the average RMSE value is dropped from 0.01147
e to 0.01061 e. For the DDEC78 charges, ∼5% points
improvement is gained after the inclusion of the 3D
structural information, and the decrease of the average
RMSE value is 0.00075 e. Similarly, ∼5% points improve-
ment is also gained for the RESP charges, and the corre-
sponding decrease of the average RMSE value is 0.0028
e. In addition, it can be observed that the corresponding
RMSE values for the training and validation sets also
decrease with the inclusion of the 3D structural infor-
mation, and overall, the standard deviations are also get-
ting smaller, demonstrating that the SuperAtomicCharge
model built on both the 2D and 3D structural information
is more robust and generalized than that only built on
the 2D structural information. To be more persuasive, the
paired t-test was employed to check whether the perfor-
mance difference between the model built on only the
2D structural information and that built on both the 2D
and 3D structural information is significant (significance
level = 0.05), and totally nine RMSE values from three
independent runs for the three types of partial charges
were used to perform the statistical test. The correspond-
ing P-value is 0.003, which is much lower than the 0.05,
indicating that the performance difference between the
model built on only the 2D structural information and
that built on both the 2D and 3D structural information
is significant. Finally, other metrics including R2, MAE
and Rp are also presented in Table S3, and those statistics
also support the conclusion that the 3D structural infor-
mation is essential to the reliable prediction of atomic
partial charges.

Further, the effectiveness of the transfer learning strat-
egy was also checked as described in ‘Transfer Learning
Strategy’. It should be mentioned that all the models
tested here were developed based on both the 2D and 3D
structural information. As shown in Table 3, for strategy
1, the performance of two models (DDEC4 and DDEC78) is
obviously improved by transferring from the RESP model.
For the DDEC4 charge model, the average RMSE value is
improved by ∼5% points and decreases from 0.01061 e to
0.01008 e, and that for the DDEC78 model is ∼8% points
and decreases from 0.01312 e to 0.01204 e. In addition,
the mutual transfer between the DDEC4 and DDEC78
models can also slightly improve the performance of
either model compared with the corresponding original
model. Here, the RESP model transferred from the DDEC4
and DDEC78 models is also slightly improved, indicating
the effectiveness of this simple transfer learning strategy.
As for the transfer strategy 2 where the learning rate
of the graph convolution layer is much smaller than
strategy 1, it is obvious that the DDEC4 and DDEC78
models transferred from the RESP model benefit much
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Table 2. The performance comparison (average RMSE values from 3 independent runs) of SuperAtomicCharge built on only the 2D
information and both the 2D and 3D information for the three kinds of partial charges

Model Type of
charge

Features RMSE

Training Validation Testing

SuperAtomicCharge DDEC4 2D 0.01129 ± 2.310 × 10−04 0.01139 ± 2.311 × 10−04 0.01147 ± 2.300 × 10−04

DDEC4 2D + 3D 0.01043 ± 1.198 × 10−04 0.01053 ± 1.198 × 10−04 0.01061 ± 1.070 × 10 −04

(+7.50%)
DDEC78 2D 0.01390 ± 9.516 × 10−04 0.01404 ± 9.099 × 10−04 0.01387 ± 9.482 × 10−04

DDEC78 2D + 3D 0.01292 ± 7.282 × 10−04 0.01328 ± 6.794 × 10−04 0.01312 ± 6.632 × 10 −04

(+5.41%)
RESP 2D 0.04903 ± 7.175 × 10−04 0.05321 ± 2.116 × 10−04 0.05283 ± 1.486 × 10−04

RESP 2D + 3D 0.04602 ± 5.409 × 10−04 0.05026 ± 3.211 × 10−04 0.04999 ± 3.164 × 10 −04

(+5.38%)

Statistic with the performance improvement or decrease is larger than 3% points was represented as bold.

Table 3. The performance comparison (average RMSE values from 3 independent runs) between transferred SuperAtomicCharge and
original SuperAtomicCharge on different atomic partial charges. Statistic with the performance improvement or decrease is larger
than 3% points was represented as bolda

Strategy 1 (global fine-tuning, lr = 1.0 × 10 −03)

Type of charges DDEC4 DDEC78 RESP

DDEC4 0.01061 ± 1.070 × 10−04 0.01267 ± 2.826 × 10 −04 (+3.43%) 0.04958 ± 3.402 × 10−04

DDEC78 0.01059 ± 4.003 × 10−04 0.01312 ± 6.632 × 10−04 0.04932 ± 3.750 × 10−05

RESP 0.01008 ± 1.919 × 10 −04 (+4.90%) 0.01204 ± 2.356 × 10 −04 (+8.23%) 0.04999 ± 3.164 × 10−04

Strategy 2 (local fine-tuning, GNN lr = 1.0 × 10 −05, FNN lr = 1.0 × 10 −03)
Type of charges DDEC4 DDEC78 RESP
DDEC4 0.01061 ± 1.070 × 10−04 0.01224 ± 3.376 × 10 −04 (+6.71%) 0.05249 ± 7.291 × 10 −04 (−5.00%)
DDEC78 0.01022 ± 7.927 × 10 −04 (+3.68%) 0.01312 ± 6.632 × 10−04 0.05287 ± 8.408 × 10 −04 (−5.76%)
RESP 0.00942 ± 7.505 × 10 −05 (+11.21%) 0.01179 ± 1.365 × 10 −04 (+10.14%) 0.04999 ± 3.164 × 10−04

aThe diagonal number in each table represents the performance of the original SuperAtomicCharge model. Vertical axis is the source model and horizontal axis
is the target model. Taking 0.01059 ± 4.003 × 10−04 as an example, it represents the performance of the target SuperAtomicCharge (DDEC4) model transferred
from the source model [SuperAtomicCharge (DDEC78)].

more compared with strategy 1. For the DDEC4 model,
the average RMSE value is improved by ∼11% points and
decreases from 0.01061 e to 0.00942 e, ∼0.0012 e precision
improvement gained using this transfer strategy (∼5%
points for strategy 1). As for the DDEC78 model, the
average RMSE value is also improved by ∼10% points
and decreases from 0.01312 e to 0.01179 e (∼8% points
for strategy 1). In parallel, the mutual transfer between
the DDEC4 and DDEC78 models using strategy 2 yields
slightly better performance than strategy 1, as shown in
Table 3.

Out of the exception, both the RESP models transferred
from the DDEC4 and DDEC78 models using strategy 2
are getting much worse than the corresponding original
models (0.05249 e versus 0.04999 e and 0.05287 e ver-
sus 0.04999 e). Our investigation revealed that this phe-
nomenon is potentially caused by the very small learning
rate used in the graph convolution layers (1.0 × 10−5).
For illustration of this point, we checked the training
logs of the RESP models transferred from the two DDEC
models for both strategy 1 (graph convolution layers
learning rate is 1.0 × 10−3) and strategy 2 (graph con-
volution layers learning rate is 1.0 × 10−5). We observed
that an average training step of 250 epochs is enough
for the RESP models transferred from the two DDEC

models under strategy 1 to be converged to better results
(compared with its original untransferred models), but
the average training step for the RESP models transferred
from the two DDEC models under strategy 2 is about 1500
epochs, implying that the RESP models under strategy
2 were updated slowly and the models were potentially
trapped into local minima. Therefore, it can be concluded
that the RESP models with a very small learning rate in
graph convolution layers may not be converged to better
results. Similarly, to be more persuasive, the paired t-
test was employed to check whether the performance
difference between the transferred models and original
untransferred models is significant, and a total of 18
RSME values (6 transferred models from three differ-
ent runs versus 6 originally untransferred models from
three different runs) were employed as the samples. For
the transfer strategy 1, the P-value is 0.0008, indicating
the effectiveness of this transfer strategy. However, the
P-value for the transfer strategy 2 is 0.55, which was
obviously contributed from the dramatical performance
decrease of the RESP models transferred from the two
DDEC models. After removal of those negative results, the
P-value for this transfer strategy can reach a better value
of 0.0006. All in all, the inclusion of the 3D structural
information in the graph representation of molecules
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is quite critical for accurate and reliable predictions of
atomic partial charges, and overall, the simple transfer
learning technique can also improve the prediction accu-
racy of models.

Multitask learning using self-supervised
descriptors
It has been reported many times that multitask learn-
ing can be more superior against single-task learning
in chemical property predictions [15, 28, 29]. Therefore,
it is of interest to explore whether the prediction of
partial charges can be beneficial from multitask learn-
ing. Here the multitask learning model for each type of
partial charges was trained based on the atom-centered
symmetry functions (ACSFs) [30–32] and then compared
with the corresponding single-task counterpart. Differ-
ent from previous multitask learning paradigm where
each target label was generally acquired based on the
bioassays [33, 34], we took this convenient way where
no expensive label acquisition was needed to explore
whether multitask learning by self-supervised descrip-
tors can improve the performance compared with the
single-task learning. The detailed descriptions and calcu-
lation of ACSF descriptors are available in the Supporting
Information.

As shown in Table 4, it is obvious that the multitask
learning supervised by the ACSF descriptors is superior to
the single-task learning. For all types of partial charges,
the RMSE values for the training, validation and testing
sets given by the multitask learning are smaller than
those given by the single-task learning. As to the DDEC4
and DDEC78 models, the average RMSE improvements
for the test set in comparison with those of the corre-
sponding single-task learning are 0.0006 e and 0.0002 e,
respectively. With regard to the RESP model, the average
RMSE improvement is much better (0.0019 e) than those
for the two DDEC models. According to the performance
statistics, it can be concluded that the predictions of the
RESP charges are much harder than those of the two
DDEC charges. Satisfactorily, the multitask learning RESP
model achieves the best performance with an average
RMSE value of 0.04805 e for the test set, which is much
better than the aforementioned best average RMSE value
of 0.04932 e (Table 3, given by the RESP model trans-
ferred from the DDEC78 model). However, it seems that
the performance improvement given by the multitask
learning based on the ACSF descriptors is inferior to the
simple transfer learning shown above for the two DDEC
models, suggesting that different training strategies may
have a different degree of benefits to different models.
Similarly, the P-value of 0.015 given by the paired t-test
demonstrated that the performance difference between
the multitask learning model and single-task learning
model is statistically significant (significant level = 0.05).
Finally, other three metrics including R2, MAE and Rp

metrics given by the single-tasking learning and multi-
task learning for the three types of partial charges are
also presented in Table S4, and the analysis of those

metrics also supports the conclusion that the multitask
learning model based on the ACSF descriptors can give
more reliable predictions than the single-task learning
model.

Performance comparison with other
state-of-the-arts
To better check the superiority of SuperAtomicCharge,
the SuperAtomicCharge model with the minimum val-
idation error for each type of partial charges was com-
pared with the three latest baselines, including the AP-
RF model proposed by Bleiziffer et al. [5], the APD-RF
model and the graph convolution-based DeepAtomic-
Charge model recently proposed by Wang et al. [8, 9] For
the sake of fairness, all the baselines shared the same
data splitting used in this study and their hyperparame-
ter configurations directly followed the original reports.
For the two classical ML models including APD-RF and
AP-RF, individual models were trained for different ele-
ments to follow the original operations. Each experiment
was repeated three times and the average metric with
standard deviation was reported.

As can be seen from Table 5, the AP-RF model shows
extremely unsatisfactory predictions to all the three
types of atomic partial charges compared with the other
models. It only gives the average RMSE values of 0.01659
e, 0.01886 e and 0.06353 e to the DDEC4, DDEC78 and
RESP partial charges, respectively. The AP-RF model was
developed only based on the 2D atom-pair fingerprints,
and potentially more complicated descriptors compre-
hensively covering the 2D and 3D profiles of molecules
are needed to improve the performance of the AP-RF
model. Overall speaking, the recently proposed graph
convolution-based DeepAtomicCharge model ranks
second last among the compared models, and it showed
the average RMSE values of 0.01148 e, 0.01404 e and
0.05469 e to the three types of atomic partial charges,
respectively. Careful investigation of the source codes of
DeepAtomicCharge indicates that only one 3D-related
feature (bond length) was utilized by the model, which
may also limit the comprehensive representations of
molecules. Among the three baselines, the ADP-RF model
is the top-performing estimator, and it gives satisfactory
average RMSE values of 0.01043 e, 0.01208 e and 0.05472
e to the three types of atomic charges, respectively. The
investigation of APD illustrated that it is a comprehensive
descriptor to describe the local 2D and 3D structural
information for each atom using iterative algorithms. As
expected, the ADP-RF model performs the best among
the compared baselines.

As shown in Table 5, our SuperAtomicCharge model
gained ∼43%, ∼37% and 24% average RMSE improve-
ments against the commonly used AP-RF model baseline
[8, 9] for the three atomic partial charges, respectively,
indicating the great superiority of our SuperAtomic-
Charge model. Stepping back, our SuperAtomicCharge
model is also superior to the latest top-performing ADP-
RF baseline. SuperAtomicCharge yielded the average
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Table 4. The performance comparison (average RMSE values from 3 independent runs) between single-task learning and multitask
learning of the SuperAtomicCharge model

Type of charges Model RMSE

Training Validation Testing

DDEC4 Single-task 0.01043 ± 1.198 × 10−04 0.01053 ± 1.198 × 10−04 0.01061 ± 1.070 × 10−04

Multitask 0.00971 ± 2.619 × 10−04 0.00991 ± 2.587 × 10−04 0.01000 ± 2.521 × 10 −04 (+5.75%)
DDEC78 Single-task 0.01292 ± 7.282 × 10−04 0.01328 ± 6.794 × 10−04 0.01312 ± 6.632 × 10−04

Multitask 0.01263 ± 2.726 × 10−04 0.01303 ± 2.494 × 10−04 0.01293 ± 2.209 × 10−04

RESP Single-task 0.04602 ± 5.410 × 10−04 0.05026 ± 3.211 × 10−04 0.04999 ± 3.164 × 10−04

Multitask 0.04287 ± 3.315 × 10−04 0.04829 ± 1.320 × 10−04 0.04805 ± 2.852 × 10 −05 (+3.90%)

Statistic with the performance improvement or decrease is larger than 3% points was represented as bold.

Table 5. The performance comparison (average RMSE values from 3 independent runs) between the optimal SuperAtomicCharge
determined by the minimum validation error criterion in this study and other three baselines including AP-RF, ADP-RF and
DeepAtomicCharge on the three types of partial charges

Type of
charges

Model RMSE

Training Validation Testing

DDEC4 AP-RF 0.01433 ± 4.131 × 10−06 0.01671 ± 6.436 × 10−06 0.01659 ± 5.868 × 10−06

ADP-RF 0.00688 ± 1.545 × 10−06 0.01038 ± 5.941 × 10−06 0.01043 ± 3.744 × 10−06

DeepAtomicCharge 0.01127 ± 3.972 × 10−04 0.01142 ± 3.486 × 10−04 0.01148 ± 3.411 × 10−04

SuperAtomicCharge 0.00912 ± 7.154 × 10−05 0.00935 ± 6.528 × 10−04 0.00942 ± 7.505 × 10 −05 (+43.22%)
DDEC78 AP-RF 0.01640 ± 2.773 × 10−06 0.01914 ± 5.999 × 10−06 0.01886 ± 1.620 × 10−05

ADP-RF 0.00819 ± 5.486 × 10−06 0.01223 ± 2.016 × 10−05 0.01208 ± 1.308 × 10−05

DeepAtomicCharge 0.01382 ± 12.84 × 10−04 0.01413 ± 11.72 × 10−04 0.01404 ± 11.77 × 10−04

SuperAtomicCharge 0.01134 ± 1.466 × 10−04 0.01197 ± 1.400 × 10−04 0.01179 ± 1.365 × 10 −04 (+37.49%)
RESP AP-RF 0.05541 ± 1.954 × 10−06 0.06349 ± 1.079 × 10−05 0.06353 ± 5.074 × 10−06

ADP-RF 0.03500 ± 6.645 × 10−06 0.05509 ± 2.178 × 10−05 0.05472 ± 7.348 × 10−06

DeepAtomicCharge 0.05041 ± 5.854 × 10−04 0.05481 ± 1.686 × 10−04 0.05469 ± 2.148 × 10−04

SuperAtomicCharge 0.04286 ± 3.315 × 10−04 0.04829 ± 1.320 × 10−05 0.04805 ± 2.852 × 10 −05 (+24.37%)

The percentage in bracket refers to the performance improvement over the commonly used AP-RF baseline.

RMSE values of 0.00942, 0.01179 and 0.04805 e to the
three types of partial charges respectively, which is
approximately 9.68%, 2.40% and 12.19% lower than the
top-performing ADP-RF baseline. As can be observed
from Table 5, the APD-RF model generally shows much
better performances to the training set than the Super-
AtomicCharge model for all the three types of partial
charges. However, the SuperAtomicCharge model always
give the lowest RMSE values to the test sets of all the
three types of partial charges, indicating that the APD-RF
model is more likely to be overfitted and less generalized
in comparison with the SuperAtomicCharge model.
Based on the statistics of the paired t-test, the P-values
of 0.001, 0.030 and 9.645 × 10−5 for the SuperAtomic-
Charge/DeepAtmoicCharge, SuperAtomicCharge/ADP-
RF and SuperAtomicCharge/AP-RF model pairs indicated
that the performance difference between the Super-
AtomicCharge model and the other three baselines is
statistically significant under the significant level of
0.05. The comparison of the three metrics including R2,
MAE and Rp (Table S5) also demonstrated that on average
SuperAtomicCharge is the top-performing model for the
predictions of atomic partial charges.

It should be noted that, compared with the most satis-
factory baseline (the ADP-RF model), the
SuperAtomicCharge model is also equipped with higher

convenience and lightweight essence. In the original
ADP-RF model, one should train individual models
for different elements, and more critically, different
models may share different lengths of ADP descriptors,
which shows a degree of unpracticality in real-life
applications. Moreover, the model size of ADP-RF for
the considered elements can accumulate to above 4 GB
of storage in this study (Table S6). On the contrary, the
SuperAtomicCharge model naturally takes a molecule
as a graph and therefore training different models for
different elements is not necessary. The model size of
SuperAtomicCharge is tremendously light weighting
where only 6.7 MB of storage is needed to allocate,
which is approximately one-thousandth of the ADP-
RF model’s size. Finally, we also analyzed the prediction
capacity to different elements in three datasets given by
the best SuperAtomicCharge model in the Supporting
Information. In brief, the SuperAtomicCharge model
developed in this study has the advantages of higher
accuracy, usability and portability compared with the
other reported models.

Performance of the predicted atomic charges
on drug design applications
To test the proposed algorithms in practical drug design
applications, we investigated the performance of the
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Figure 3. Scoring power (the ability of the algorithm to produce binding scores in a linear correlation with experimental binding data) for the predicted
RESP (panels A2, B2 and C2) and DDEC4 (panels A3, B3 and C3) charges and the original AM1-BCC charges (panels A1, B1 and C1), where the interior
dielectric constant of 1 (panel A), 2 (panel B) and 4 (panel C) was used for the comparison.

RESP and DDEC4 atomic partial charges predicted
by SuperAtomicCharge on the PDBbind dataset (1299
protein–ligand systems) for the estimation of the scoring
power and two drug targets (caspase 8 and FXR) for the
estimation of the screening power.

Assessment of the Algorithm Based on the Scoring
Power. As shown in Figure 3, both the predicted RESP and
DDEC4 atomic charges overall exhibit a higher accuracy
compared with the predicted AM1-BCC charges. Espe-
cially for εin = 1 (panels A1–A3), the predicted RESP and
DDEC4 atomic charges improve the Rp value of ∼0.400
for the AM1-BCC charges to ∼0.450, suggesting that the
proposed algorithms are useful for practical drug design

applications. For εin = 2 (panels B1–B3), the Rp values
given by predicted RESP and DDEC4 atomic charges were
also slightly improved in comparison with the results
of the AM1-BCC charges. However, the predicted RESP
and DDEC4 atomic charges gave almost the same Rp

values of ∼0.600 for εin = 4 in comparison with the results
of the AM1-BCC charges. The reason why there is no
improvement based on the predicted charges for εin = 4
is potentially because the electrostatic interactions are
dramatically weakened in the binding free energy cal-
culations at such high dielectric constant. All in all, the
high-level QM atomic charges predicted by SuperAtomic-
Charge can achieve a more reasonable accuracy for the
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Figure 4. Screening power [the ability of algorithm to identify the known actives among the chemical background (decoys) toward a given target] for the
caspase 8 system, where the P-values of the t-test for the original OPLS3e atomic charges, and the predicted RESP and DDEC4 atomic charges are shown
in panels A–C, respectively. The corresponding AUC values of the ROC curves and the enrichment factors are illustrated in panels D and E, respectively,
for the three types of atomic charges (blue for OPLS3e, green for RESP and red for DDEC4).

end-point binding free energy calculations according to
the above analysis.

Assessment of the Algorithm Based on the Screening
Power. To give a more comprehensive validation of the
proposed algorithm, virtual screening for two drug tar-
gets (caspase 8 and FXR) was conducted to investigate
the discrimination capability of the known actives and
the chemical background. As shown in Figures 4 (caspase
8) and 5 (FXR), the predicted RESP charges exhibit the
best screening power according to all the three metrics
(P-value, area under the curve of roc (receiver operating
characteristic curve) and enrichment factor) for both the
two targets. It shows a P-value of 1.21 × 10−120 and an
AUC of 0.861 to caspase 8, and a P-value of 2.33 × 10−17

and an AUC of 0.710 to FXR, which are much better than
the results given by the original OPLS3e charges, where
it only yielded a P-value of 6.99 × 10−77 and an AUC of
0.841 to caspase 8, and a P-value of 5.67 × 10−01 and an
AUC of 0.503 to FXR. In addition, the predicted DDEC4
charges also give overall better results compared with the
original OPLS3e charges, except for an AUC value of 0.827
to the caspase 8 system, which (red line in Figure 4D) is a
bit lower than that of the original OPLS3e charges with
an AUC value of 0.841 (blue line in Figure 4D). Here it
should be mentioned that, for FXR, the OPLS3e charges do
not show any capability to discriminate the actives from
the decoys indicated by the completely overlapped dis-
tributions of the docking scores (P-value>0.5, Figure 5A)
and an AUC value of ∼0.5 (a random manner, blue line in
Figure 5D). Moreover, both the predicted RESP and DDEC4
charges can reasonably discriminate the actives from
the decoys, and additionally, both the predicted RESP

and DDEC charges showed much better results in terms
of the intuitive enrichment factor in comparison with
the original OPLS3e charges (Figure 5E), suggesting that
the proposed methods are useful in large-scale virtual
screening.

Further observation shows that the top-scored actives
based on the predicted RESP and DDEC4 atomic charges
for both caspase 8 (Figure 4B and C) and FXR (Figure 5B
and C) prefer to gain stronger binding affinities com-
pared with those derived from the OPLS3e atomic charge
(Figures 4A and 5A), whereas leaving the distribution of
the decoys nearly unchanged, which thereafter results in
better enrichment factors for the two targets (Figures 4E
and 5E). To better understand why the predicted RESP
and DDEC4 atomic charges prefer to give better dock-
ing scores for the actives, the mean absolute atomic
charges (MAACs) were calculated for the three types
of atomic charges of the 135 FXR actives. As shown
in Table 6, both the RESP and DDEC4 atomic charges
exhibit larger absolute values (increased by 20% and
13% for the RESP and DDEC4 atomic charges, respec-
tively) compared with the OPLS3e atomic charges, and
the corresponding mean docking scores (MDSs) of the
135 FXR actives based on the RESP and DDEC4 atomic
charges also increase by 11% (MDS = −8.91 kcal/mol)
and 8% (MDS = −8.66 kcal/mol), respectively, in com-
parison with that based on the OPLS3e atomic charges
(MDS = −8.02 kcal/mol), indicating that larger absolute
atomic charges may result in more favorable electro-
static interactions with the target for active compounds,
whereas, on the contrary, may lead to a larger unfavor-
able electrostatic interaction with the target for decoy
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Figure 5. Screening power for the FXR system, where the P-values of t-test for the original OPLS3e atomic charges, and the predicted RESP and DDEC4
atomic charges are shown in panels A–C, respectively. The AUC values of the ROC curves and the enrichment factors are illustrated in panels D and E,
respectively, for the three types of atomic charges (blue for OPLS3e, green for RESP and red for DDEC4).

molecules. Furthermore, a case study was conducted on
an example molecule (lithocholic acid) to give a more
detailed comparison of the electrostatic effects for the
three types of atomic charges. As shown in Figure 6A,
the binding modes of lithocholic acid in the binding site
of FXR predicted by Glide based on the three types of
atomic charges (green, blue and orange for the OPLS3e,
RESP and DDEC4 atomic charges, respectively) are highly
overlapped, implying that the use of different types of
atomic charges may not seriously affect the selection
of the top-1 docking pose, and therefore any change
of the binding affinity may probably contributed from
the difference of the electrostatic effects arising from
different types of atomic charges. As observed, much
lower binding affinity was shown for the top-1 dock-
ing pose based on the OPLS3e atomic charges [docking
score = −7.51 kcal/mol, which is ∼20% higher than those
based on the RESP and DDEC4 atomic charges (−9.11
and − 8.96 kcal/mol)]. Further charge-spectrum analysis
reveals that the OPLS3e atomic charges (green line in
Figure 6B) usually exhibit much lower amplitude (with
the MAAC of 0.1124 e) compared with the correspond-
ing RESP (blue line in Figure 7B, MAAC = 0.1561 e) and
DDEC4 (orange line in Figure 7B, MAAC = 0.1606 e) atomic
charges. A further structural observation shows that the
main difference between the OPLS3e and RESP/DDEC4
atomic charges lie in the carbon atoms, whose charges
were usually parameterized to zero by empirical atomic
charge models, whereas these electrically neutral atoms
may exhibit much larger electrostatic effect within the
more realistic high-level QM calculations.

Taken together, the above results clearly show that
the high-level QM atomic charges predicted by the
SuperAtomicCharge model can benefit the drug design

campaign, and the SuperAtomicCharge models are
useful tools in large-scale drug design applications.

Access of SuperAtomicCharge services
For those who wants to employ our proposed model

to calculate the atomic partial charges in some drug
design pipelines, we developed two easy-to-use tools
including an online server and the source code command
lines to satisfy such demands. As to the online server,
we directly integrated the proposed model into the
DeepChargePredictor server developed in our group
(http://cadd.zju.edu.cn/deepchargepredictor/). Totally,
three types of partial charges including DDEC4, DDEC78
and RESP can be predicted by SuperAtomicCharge.
The inputs of the SuperAtomicCharge services are the
same to those supported by DeepChargePredictor (SDF
and MOL2 files) [35]. The outputs also include two
types of files (SDF and MOL2). Among them, the MOL2
file that stores the predicted partial charges can be
directly used as the inputs of some practical applications
such as molecular docking and MD simulations. In
addition, the outputted SDF file also stores the predicted
partial charges and that can be easily processed by
the commonly used cheminformatics tools such as
RDKit (see the script: https://github.com/zjujdj/Supe
rAtomicCharge/blob/main/scripts/get_sdf_charge.py). It
should be noted that SuperAtomicCharge was developed
based on the 3D molecular structures, and therefore the
inputted molecules should contain the coordinates of
atoms. It is recommended that the submitted molecule
can be optimized by the merck molecular force field
(MMFF) force field or PM7 method, and so on. In addition,
the maximum number of the atoms in a molecule is
unlimited. More detailed information is available at the
website of http://cadd.zju.edu.cn/deepchargepredictor/.
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Table 6. Differences of MAACs and MDSs between the three types of atomic charges of the 135 FXR actives

OPLS3e RESP DDEC4

MAAC (e) 0.1606 0.1921 0.1809
Rratio of change from the OPLS3e charge – 20% 13%

MDS (kcal/mol) −8.02 −8.91 −8.66
Ratio of change from the OPLS3e charge – 11% 8%

Figure 6. Distributions of the three types of atomic charges for lithocholic acid. The binding modes and docking scores of lithocholic acid targeting FXR are
shown in panel A, in which the small molecule with the OPLS3e, RESP and DDEC4 charges are colored in green, blue and orange stick models, respectively.
The corresponding distributions of the atomic charges are illustrated with both spectra (panel B) and structures in panels B and C, respectively.

Due to the limited computing resources on the server
and other irresistible factors, we also provide the source
code command lines for the partial charge predictions
using the well-trained models in this study. To use the
source code command lines, two important steps includ-
ing conda environment reproduce and repository clone
should be accomplished first. As to troublesome environ-
ment reproduce, we provide the simplest way that uses
the file packaged by conda-pack to reproduce the envi-
ronment, and alternatively, the commonly used method
that utilizes the package information files to reproduce
the environment is also supported. After the two impor-
tant steps, the ‘charge prediction’ and ‘model training’
usage is available in our GitHub page (https://github.co
m/zjujdj/SuperAtomicCharge).

Conclusion
In this study, a deep graph learning-based model was
developed to predict three kinds of important atomic par-
tial charges including DDEC4, DDEC78 and RESP based on
the structures of molecules. A simple transfer learning

strategy and an ACSF descriptors-based multitask learn-
ing strategy can be used to improve the prediction reli-
ability of models. Compared with the latest GNN-based
baseline and ML-based baseline, our proposed model
achieved the best performance on the three external
test sets. Moreover, the atomic partial charges of new
molecules predicted by our model can be effectively
used in some practical drug design applications such as
structure-based virtual screening. Finally, the free ser-
vices of our models were provided, and users can directly
use the well-trained charge models to predict the partial
charges of new molecules or trained their customized
charge models using the new datasets.

Key points

• A novel data-driven deep graph learning frame-
work named SuperAtomicCharge was proposed
to predict important quantum-mechanical (QM)
partial charges only based on the structures of
small molecules.
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• SuperAtomicCharge showed better performance
on all the external test sets and had better usabil-
ity and portability compared with latest base-
lines.

• The predicted RESP and DDEC4 charges of new
molecules given by SuperAtomicCharge showed
more robust scoring and screening power than
the commonly used partial charge in molecular
docking.

• Two tools including an online server (http://cadd.
zju.edu.cn/deepchargepredictor) and the source
code command lines (https://github.com/zjujdj/
SuperAtomicCharge) were developed for the easy
access of the SuperAtomicCharge services, the
results can be directly used in the biochemical
and biophysical computations such as molecular
docking.

Supplementary data
Supplementary data are available online at https://acade
mic.oup.com/bib.
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