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Abstract 

Predicting drug-target interaction (DTI) is a critical and rate-limiting step in drug discovery. 

Traditional wet-lab experiments are reliable but expensive and time-consuming. Recently, deep 

learning has revealed itself as a new and promising tool for accelerating the DTI prediction process 

because its powerful performance. Due to the vast chemical space, the DTI prediction models are 

typically expected to discover drugs or targets that are absent from the training set. However, 

generalizing prediction performance to novel drug-target pairs that belong to different distributions 

is a challenge for deep learning methods. In this work, we propose an Ensemble of models that 

capture both Domain-generIc and domain-Specific features (E-DIS) to learn diversity domain 

features and adapt to out-of-distribution (OOD) data. We employed Mixture-of-Experts (MOE) as 

a domain-specific feature extractor for the raw data to prevent the loss of any crucial features by the 

encoder during the learning process. Multiple experts are trained on different domains to capture 

and align domain-specific information from various distributions without accessing any data from 

unseen domains. We evaluate our approach using four benchmark datasets under both in-domain 

and cross-domain settings and compare it with advanced approaches for solving OOD 

generalization problems. The results demonstrate that E-DIS effectively improves the robustness 

and generalizability of DTI prediction models by incorporating diversity domain features. 

Key words: drug-target interaction prediction, out-of-distribution generalization, domain-generic 

feature, domain-specific feature 
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1 Introduction 

The accurate prediction of DTI is a basic task in the field of new drug design and development, 

with significant implications for drug repositioning, drug discovery, side-effect prediction and drug 

resistance [1–3]. While traditional wet-lab experiments are reliable, they are also costly and time-

consuming [4]. Deep learning has recently been widely used to accelerate the DTI prediction process 

due to its fast and powerful learning ability, which allows compounds with high affinity to be quickly 

selected from large amounts of data for further study [5]. The drug-target pairs that need to be 

predicted in real-world applications are often unseen in the training data due to the vast chemical 

space [6]. However, the performance of deep learning methods decreases rapidly when predicting 

novel drug-target pairs. Generalizing prediction performance to OOD data is a challenging for deep 

learning methods [7,8]. 

To overcome these challenge, researchers have been working on developing models with 

strong generalization ability to accurately predict drug-target pairs that are unseen in the training 

data [9,10]. One of the most notable approaches is to learn domain-generic features, with the 

assumption that these generic representations exist across all data instances [11–13]. Adversarial 

domain adaptation is a method that aims to learn domain-generic features by minimizing the 

distribution discrepancy across domains [14]. However, deep learning methods can sometimes rely 

too heavily on a single feature, leading to shortcuts that hinder accurate predictions on OOD data 

[15]. To address this issue, Pagliardini et al. proposed a technique that captures a diverse set of 

domain-generic features by enforcing agreement among models on the source domain while 

introducing disagreement on the target domain [16]. Nonetheless, some studies[13,17,18] have 

shown that forcing the model to learn domain-generic features on domains with vastly different 
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marginal label distributions can lead to a deterioration in performance. Hence, learning domain-

generic features alone may not always be sufficient for achieving successful generalization. 

On the other hand, incorporating domain-specific features can enhance the model's ability to 

capture unique patterns and relationships specific to each domain, leading to more accurate 

predictions on domain-specific data [19]. One popular deep learning technique that leverages this 

idea is the MOE approach, which has been successfully applied to various tasks [11,20,21]. Each 

input is assigned to an expert that specializes in handling data from a specific domain. This allows 

the model to effectively capture domain-specific features and make more precise predictions. Recent 

studies have demonstrated that MOE exhibits superior generalization ability compared to the 

original network, especially when the number of source domains increases [7,22–24]. However, no 

existing research has explored the connection between MOE and DTI prediction. 

Here, in order to enhance the generalization ability of DTI prediction model, we proposed a 

simple yet efficient prediction framework by training Ensembles of Domain-generIc feature 

extractor and domain-Specific feature extractor (E-DIS). Our approach involves training an 

ensemble of models that capture both domain-generic and domain-specific features. Initially, we 

trained a domain-generic feature extractor using all the available training data, and then modeled 

the potential space for drug-target pairs as a mixture of different domains using a gating network 

that relied on the domain-generic feature. Unlike other approaches[11,20,21] that used MOE as a 

layer in the model, we employed MOE as a domain-specific feature extractor for the raw data. This 

prevents the loss of any crucial features by the encoder during the learning process. E-DIS represents 

the first attempt to simultaneously learn both domain-generic and domain-specific features for the 

DTI prediction task. By incorporating diversity domain features, E-DIS avoids relying solely on one 
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feature and mitigates the risk of spurious correlations. 

2 Methods 

2.1 Datasets 

Four datasets were used to train and validate our model. Table 1 shows the statistics information 

of the four datasets. The benchmark datasets used for the regression task in this study are the same 

as those used in GraphDTA[25], including the Davis[26] and KIBA[27] datasets. The binding 

affinity of the Davis dataset is measured using the dissociation constant (Kd) values, which are 

transformed into pKd for binding affinity prediction by Equation (1), with values ranging from 5.0 

to 10.8. The binding affinity of the KIBA dataset is measured using the KIBA score[27] computed 

from the combination of heterogenous information sources such as Ki, Kd, and IC50, with values 

ranging from 0.0 to 17.2. For the classification task, two widely used DTI datasets (BindingDB[28], 

BIOSNAP[6,29]) are used. BindingDB is a low-bias version of the dataset constructed from 

BindingDB database by Bai et al,[28] while BIOSNAP is a balanced dataset with the same number 

of positive and negative samples created from the DrugBank database by Huang et al.[29]  

 𝑝𝐾𝑑 =  −𝑙𝑜𝑔10 (
𝐾𝑑

109) (1) 

2.2 Method overview 

Figure 1 illustrates an overview of the E-DIS framework, which involves ensembles of a 

domain-generic feature extractor and a domain-specific feature extractor. The process began by 

training the domain-generic feature extractor using the entire training dataset. Subsequently, we 

employed MOE model, which consisted of a set of expert networks and a trainable gating network, 

to learn domain-specific features. The gating network routed the input data to the corresponding 

experts that specialize in specific domain, based on the features learned by the domain-generic 
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feature extractor. Each expert network within the MOE can be any DTI prediction network designed 

to capture domain-specific features. Finally, we predicted the interaction between a given drug-

target pair by computing the weighted average of the predicted values obtained from both the 

domain-generic feature extractor and the domain-specific feature extractor.  

2.3 domain-generic feature extractor 

The domain-generic feature extractor in our framework can be any DTI prediction network 

that is trained using the entire training dataset. In our experiment, the domain-generic feature 

extractor encodes the input drug molecule and protein sequence separately. These encoded 

representation vectors are then concatenated to obtain the domain-generic feature 𝑓. The domain-

generic feature serves multiple purposes in our framework. Firstly, it is utilized as input to various 

fully connected layers for predicting DTI. Additionally, it is also inputted into a gating network, 

which models the potential space of drug-target pairs as a combination of different domains. The 

domain-generic feature learned from the data is used as input to the gating network to determine 

which expert will be selected for a given input. For a given input x, the domain-generic feature 𝑓 

is 

 𝑓 = 𝐷(𝑥) (2) 

2.4 domain-specific feature extractor 

MOE is trained on the different domains to capture domain-specific features. Unlike traditional 

deep learning models where the entire neural network participates in the computation for each input 

sample, MOE integrates multiple neural networks into a single task, with each network dedicated 

to a specific part of the dataset. Each of these neural networks is referred to as an expert. During 

both training and inference, an input dynamically activates a specific expert within the MOE. This 

activation is adaptively determined based on the input's domain-generic feature and the expertise of 
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the gating network. The final output of the MOE is a weighted combination of the outputs from each 

expert and the gating network. Consequently, each expert has a specific domain in which they excel 

and performs better than other experts. 

The MOE framework in our experiments consists of a set of expert networks E1, · ·, En and a 

trainable gating network G. We have 3 experts in our experiments, but only need to evaluate one of 

them for each example. Each expert has specific learnable weights and is responsible for handling 

a different part of the dataset. While all experts are DTI prediction networks with identical 

architectures in our setting, it's important to note that experts can have varying architectures as long 

as they accept inputs of the same size and produce outputs of the same size. This flexibility allows 

each expert to specialize in a particular domain.  

The gating network plays a crucial role in routing the raw data to the appropriate experts, based 

on the features 𝑓 learned by the domain-generic feature extractor. And the experts take the raw 

data as the input to avoid any potentially valuable features being discarded by the domain-generic 

feature extractor during the learning process. For a given raw data x, the output y of the MOE 

module is computed as follows: 

 𝑦 = ∑ 𝐺(𝑓)𝑖𝐸𝑖(𝑥)𝑛
𝑖=1  (3) 

Where 𝑓  is the feature learned by the domain-specific feature extractor, 𝐺(𝑓)𝑖  is the 

contribution of the i-th expert to the output vector, 𝐸𝑖(𝑥) is the output of the i-th expert network.  

2.5 Metrics 

For the regression task, we evaluated the models using mean square error (MSE, the smaller 

the better), concordance index (CI, the larger the better),[30] and rm
2 index (the larger the better)[31] 

as performance metrics [32–34]. The MSE is a commonly used metric that measures the difference 

between the predicted and the actual values, with smaller values indicating higher prediction 
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accuracy. The CI measures whether the predicted values maintain the same order as the real values. 

The MSE evaluates the prediction accuracy of models that output continuous values, while the CI 

evaluates the ranking performance. The rm
2 index measures the external prediction performance of 

the model on a new dataset. In the classification task, we employed several performance metrics to 

evaluate the models. These included the area under the receiver operating characteristic curve 

(AUROC), the area under the precision-recall curve (AUPRC), accuracy, sensitivity, and specificity. 

AUROC and AUPRC measure the discrimination ability and precision of the models, respectively, 

with larger values indicating better performance. Accuracy represents the proportion of correctly 

classified samples, while sensitivity and specificity assess the model's ability to correctly identify 

positive and negative samples, respectively. 

3 Results and discussion 

E-DIS were implemented in MindSpore [35]. We used the Adam optimizer [36] with the 

default momentum schedule. We employed two different experimental strategies: the in-domain 

setting and the cross-domain setting. In the in-domain setting, each experimental dataset was 

randomly divided into train set and test set according to a specific proportion. While the in-domain 

setting is a common experimental approach, it may not necessarily reflect the real-world 

performance of DTI prediction models in prospective predictions. Some studies have shown that 

results obtained through random splitting can be overly optimistic due to information leakage [6,10]. 

Furthermore, in real-world applications, the drug-target pairs that need to be predicted are usually 

unseen in the training data due to the vast chemical space. To imitate realistic scenario and further 

demonstrate the OOD generalization capability of E-DIS, we also adopted cross-domain setting. In 

the cross-domain setting, measures were taken to ensure that the structural information about drugs 
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and targets did not leak into the test set. This provides a more realistic and challenging evaluation 

option for the models. 

3.1 In-domain performance comparison 

regression tasks 

In this study, we applied the proposed E-DIS to GraphDTA,[25] MGraphDTA[10] and 

DGraphDTA[34] and compared their performance with the benchmark models (DeepDTA,[32] 

WideDTA,[5] GraphDTA, DeepAffinity,[37] MGraphDTA and DGraphDTA). The results of 

DeepDTA, WideDTA, GraphDTA, DeepAffinity and MGraphDTA were taken from the 

reference[10]. We observed that the protein sequences in the majority of cases were characterized 

solely by amino acid types. However, DGraphDTA incorporated additional properties based on R 

groups such as polarity, weight, electrification, aromaticity, and others. To enhance the protein 

representation module of MGraphDTA, we incorporated these protein features while keeping the 

remaining aspects of the model consistent with MGraphDTA. To ensure a fair comparison, we used 

the same training and test sets as GraphDTA for the Davis and KIBA datasets. All experiments were 

repeated three times using different random seeds for robustness analysis. 

Table 2 and Figure 2 showed the DTI prediction performance of E-DIS and the benchmark 

models on the Davis and KIBA datasets. The results indicated that incorporating additional protein 

representation information in MGraphDTA_P leads to a slight improvement in its DTI prediction 

performance compared to MGraphDTA. E-DISMGraphDTA_P has consistently outperformed other 

models in MSE and performed competitively in CI and rm
2, despite did not using any information 

related to spatial structure. As can be seen from Figure 2, the prediction performance of all models 

significantly improved after applying the E-DIS method. The difference between the models before 
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and after using the E-DIS method is statistically significant (95% confidence interval) according to 

the t-test (p < 0.05). In the KIBA dataset, GIN showed the most significant improvement before and 

after using the E-DIS method, with a 10.6% reduction in MSE. And MGraphDTA_P showed the 

most significant improvement in the Davis dataset, with a 6.7% reduction in MSE. 

classification tasks 

The DTI prediction performance of E-DIS and the benchmark models was also compared for 

the classification task on the BindingDB and BIOSNAP datasets. We used the same dataset as 

DrugBAN under the random split setting. The results of GraphDTA, MolTrans and DrugBAN were 

taken from the references[6], and the rest of the experiments were repeated three times to calculate 

the mean and standard deviation of the prediction results.  

Table 3 and Figure 3 showed the DTI prediction performance of E-DIS and the benchmark 

models on the BindingDB and BIOSNAP datasets. It can be observed that the DTI prediction 

performance of all models improved after applying the E-DIS method, indicating that utilizing both 

domain-generic features and domain-specific features contributed to enhancing the model's 

prediction performance. E-DISDrugBAN consistently outperformed other models in two datasets. The 

AUROC for E-DISDrugBAN on BindingDB and BIOSNAP were 0.971(0.000), 0.921(0.001), 

respectively. At the same time, it is worth noting that models that do not use E-DIS method achieved 

similar and excellent performance on both datasets, and there was no significant difference between 

each model. This may be attributed to the overoptimistic performance estimation under the random 

split setting caused by information leakage, which does not accurately reflect the real-world 

performance of the models in prospective prediction scenarios. 

3.2 Cross-domain performance comparison 
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unseen drug/target split 

Additional experiments were conducted using different splitting strategies on the BindingDB 

and BIOSNAP datasets to ensure that the structural information about drugs and targets does not 

leak into the test set. In this approach, 10% of the drugs/proteins were randomly selected as the test 

set, and all associated drugs/proteins were removed from the training set. This ensured that the test 

set contained unseen drugs or proteins that were not present in the training set. The performance of 

the baseline models (MGraphDTA_P, MolTrans, and DrugBAN) was compared before and after 

applying the E-DIS method. For a fair comparison, all models shared the same training and test sets, 

and all experiments were repeated three times. 

Figure 4 showed the results of three experiments conducted under the unseen drug/target split 

settings. A significant degrade in performance can be observed compared to the results obtained 

under the random split setting shown in Table 4. None of the models consistently maintained optimal 

performance across all split settings, indicating the greater difficulty of the split settings that involve 

unseen drugs/targets. Under the unseen drug/target split setting, the prediction performance of the 

three models showed improvement to varying degrees after applying the E-DIS method. Particularly, 

MGraphDTA_P and MolTrans exhibited highly significant differences (p < 0.01) in performance 

before and after using the E-DIS method under the unseen drug split, while DrugBAN also showed 

significant differences (p < 0.05). E-DISMGraphDTA_P achieved a 7.9% increase in AUROC compared 

to MGraphDTA_P in the BindingDB dataset and a 5.1% increase in the BIOSNAP dataset. In 

general, the majority of models (17 out of 18) demonstrated significantly improved performance 

after using E-DIS in the two datasets across the three split methods. These results highlight that E-

DIS can enhance the prediction accuracy of DTI prediction models for unseen drugs/targets in the 
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training set. 

cluster-based split 

Furthermore, we also adopted a more stringent cluster-based splitting strategy to evaluate the 

predictive performance of the model on data with unknown distributions. The same source and 

target domains as used in DrugBAN were selected under the cluster-based split setting. The drugs 

and targets were clustered using ECFP4 fingerprint and pseudo amino acid composition, 

respectively. Drug-target pairs between 60% of the drug clusters and 60% of the target clusters were 

considered as the source domain data, while the remaining clusters were considered as the target 

domain data. This ensured that the compounds in the source and target domains had different 

structures, as the single-linkage clustering method was used to maintain a sufficient distance 

between any two clusters. 

Table5 and Figure 5 showed the performance of E-DIS compared to BAT and CDAN, which 

were advanced methods for solving out-of-distribution generalization problem under the cluster-

based split setting. It was observed that models using the E-DIS method (E-DISMODEL) significantly 

outperformed the models without using E-DIS (MODEL) in both the BindingDB and BIOSNAP 

datasets (p < 0.01). The average AUROC of E-DISMODEL increased by 7.1% and 5.7% compared to 

MODEL in the BindingDB and BIOSNAP datasets, respectively. Among all models, E-

DISMGraphDTA_P consistently outperformed the others in AUROC and performed competitively in 

AUPRC. Furthermore, the performance of most models using the E-DIS method was better than 

those using BAT or CDAN. Notably, E-DIS did not use any information about the target domain 

during training, while both BAT and CDAN relied on information from unlabeled data in the target 

domain. These results highlight that the E-DIS method achieved comparable or even superior 
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performance compared to BAT and CDAN in solving the out-of-distribution generalization problem, 

showcasing the benefits of domain-generic features and domain-specific features for model 

generalization. 

3.3 Interpretation and visualization 

In order to explore whether the two extractors in E-DIS learn different features, we visualized 

the importance of atoms in the molecules, as shown in Figure 6. We calculated each atom's 

contribution to the final predicted result using the Grad-AAM method,[10] a visual interpretation 

technique that use the gradient information from the last graph neural network layer. And we then 

generated a probability map using RDkit. The visualization results demonstrated that both extractors 

were able to detect essential features related to hydrogen bond, hydrophilic, hydrophobic, π-π 

interactions and other important factors involved in drug-target binding. Furthermore, it was 

observed that the contributions of atoms in the molecules differed between the two extractors, 

indicating that they focused on different types of interactions. Specifically, the domain-generic 

feature extractor primarily emphasized hydrophilic, hydrophobic and π-π interactions, while the 

domain-specific feature extractor placed more emphasis on hydrogen bond interactions. 

These findings suggest that the two extractors in E-DIS learn complementary features, with 

each extractor specializing in different aspects of drug-target interactions. This supports the notion 

that the combination of domain-generic and domain-specific features in E-DIS enables a 

comprehensive understanding of the complex interactions between drugs and targets. 

4 Conclusions 

The accurate prediction of DTI is a crucial step for the field of new drug design and 

development. Although deep learning models have shown promise in DTI prediction, their limited 
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generalization ability hinders their practical application. In this paper, we propose a versatile 

ensemble of models called E-DIS, which aims to capture both domain-generic features and domain-

specific features. By incorporating diverse domain features, E-DIS mitigates the risk of relying 

solely on one feature and thus improves its generalizability to novel drug-target pairs. The 

experimental results demonstrate that E-DIS consistently outperforms other models in DTI 

prediction tasks, both in in-domain and cross-domain settings. Furthermore, E-DIS exhibits 

competitive performance in domain generalization, comparable to related approaches. In our 

experiment, the experts in different domains are homogeneous networks with identical architectural 

units that differ only in parameters. However, in future research, experts with varying architectural 

units could be explored to better accommodate the diversity of inputs. Importantly, E-DIS is 

algorithmically flexible and can be easily extended to other fields beyond DTI prediction. This 

versatility makes it a promising approach for addressing generalization challenges in various 

domains. 

Key Points 

1. E-DIS is a versatile framework for predicting drug-target interactions that enables training 

different extractors to capture domain-generic and domain-specific features respectively. 

2. E-DIS enhances the generalizability to novel drug-target pairs by training multiple experts to 

capture and align domain-specific information from the training domains without accessing any 

data from unseen domains. 

3. To demonstrate the efficacy of our proposed E-DIS framework, we extensively evaluate it on 

four benchmark datasets under both in-domain and cross-domain settings. The majority of 

models showed significantly improved performance after using E-DIS (p < 0.05) and perform 
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competitively with advanced approaches in domain generalization. 

Data and code availability 

All data used in this paper are publicly available and can be accessed at 

https://github.com/hkmztrk/DeepDTA/tree/master/ data for the Davis and KIBA datasets, 

https://github.com/peizhenbai/DrugBAN/tree/main/datasets data for the BindingDB and BIOSNAP 

datasets. All codes of E-DIS are available at https://www.mindspore.cn/ecosystem/libraries.  
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Figure 

 

Figure 1. Overview of the E-DIS framework, which comprises ensembles of a domain-generic 

feature extractor and a domain-specific feature extractor. The gating network (G) routes the input 

data (X) to the corresponding experts based on the features learned by the domain-generic feature 

extractor.  
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Figure 2. Performance comparison before and after using the E-DIS method on (a) KIBA and 

(b) Davis datasets with random split settings.  
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Figure 3. Performance comparison before and after using the E-DIS method on (a) 

BindingDB and (b) BIOSNAP datasets with random split settings. 
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Figure 4. Performance comparison before and after using the E-DIS method on the (a) BindingDB 

and (b) BIOSNAP datasets with unseen drug, unseen target, unseen drug and target split settings. 
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Figure 5. Performance comparison of E-DIS, BAT and CDAN on the (a) BindingDB and (b) 

BIOSNAP datasets with cluster-based split settings. 
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Figure 6. Importance visualization of co-crystalized ligands (a: 1BNM, b: 1KZK) from Protein 

Data Bank (PDB). The upper left side of each panel shows the importance visualization of atoms 

in domain-generic feature extractor. The bottom left side of each panel shows the importance 

visualization of atoms in domain-specific feature extractor. The right side of each panel shows the 

2D interaction visualization extracted from the complex. At the bottom right, the legend panel for 

the drug-target interaction maps is displayed. 
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Tables 

Table 1. The statistics of experimental datasets.  

Datasets Task type Compounds Proteins Interactions 

Davis Regression 68 442 30056 

KIBA Regression 2111 229 118254 

BindingDB Classification 14,643 2,623 49199 

BIOSNAP Classification 4,510 2181 27,464 
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Table 2. Performance comparison on the Davis and KIBA datasets with random split settings 

(Best, Second Best).  

Datasets Davis KIBA 

Method MSE CI rm
2 index MSE CI rm

2 index 

DeepDTA 0.261 0.878 0.630 0.194 0.863 0.673 

WideDTA 0.262 0.886  0.179 0.875  

GraphDTA 0.229 0.893  0.139 0.891  

DeepAffinity 0.253 0.900  0.188 0.842  

DGraphDTA 0.202(0.002) 0.903(0.005) 0.708(0.007) 0.124(0.001)  0.904(0.001) 0.786(0.001)  

MGraphDTA 0.207(0.001) 0.900(0.004) 0.710(0.005) 0.128(0.001) 0.902(0.001) 0.801(0.001) 

MGraphDTA_P 0.206(0.002) 0.901(0.004) 0.709(0.003) 0.124(0.001) 0.906(0.001) 0.794(0.002) 

E-DISMGraphDTA_P 0.193(0.001) 0.909(0.002) 0.732(0.003) 0.113(0.001) 0.911(0.001) 0.811(0.001) 
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Table 3. Performance comparison on the BindingDB and BIOSNAP datasets with random split 

settings (Best, Second Best).  

Model AUROC AUPRC Accuracy Sensitivity Specificit 

BindingDB 

GraphDTA 0.951(0.002) 0.934(0.002) 0.888(0.005) 0.882(0.012) 0.897(0.008) 

MolTrans 0.952(0.002) 0.936(0.001) 0.887(0.006) 0.877(0.016) 0.902(0.009) 

DrugBAN 0.960(0.001) 0.948(0.002) 0.904(0.004) 0.900(0.008) 0.908(0.004) 

MGraphDTA_P 0.958(0.001) 0.942(0.002) 0.901(0.002) 0.894(0.005) 0.907(0.009) 

E-DISMGraphDTA_P 0.966(0.000) 0.954(0.001) 0.913(0.001) 0.915(0.010) 0.920(0.013) 

BIOSNAP 

GraphDTA 0.887(0.008) 0.890(0.007) 0.800(0.007) 0.745(0.032) 0.854(0.025) 

MolTrans 0.895(0.004) 0.897(0.005) 0.825(0.010) 0.818(0.031) 0.831(0.013) 

DrugBAN 0.903(0.005) 0.902(0.004) 0.834(0.008) 0.820(0.021) 0.847(0.010) 

MGraphDTA_P 0.901(0.004) 0.903(0.006) 0.827(0.003) 0.801(0.017) 0.852(0.015) 

E-DISMGraphDTA_P 0.914(0.002) 0.919(0.004) 0.839(0.002) 0.832(0.018) 0.864(0.012) 
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Table 4. Performance comparison before and after using the E-DIS method on the 

BindingDB and BIOSNAP datasets with unseen drug/target split settings. (Best, Second Best).  

  BindingDB BIOSNAP 

Method AUROC AUPRC AUROC AUPRC 

 unseen drug 

MGraphDTA_P 0.952(0.002) 0.929(0.004) 0.864(0.005) 0.877(0.003) 

E-DISMGraphDTA_P 0.961(0.002) 0.944(0.002) 0.877(0.004) 0.891(0.004) 

MolTrans 0.949(0.002) 0.932(0.001) 0.846(0.002) 0.864(0.006) 

E-DISMolTrans 0.954(0.002) 0.939(0.003) 0.865(0.003) 0.887(0.003) 

DrugBAN 0.964(0.002) 0.952(0.002) 0.880(0.005) 0.892(0.003) 

E-DISDrugBAN 0.969(0.001) 0.959(0.001) 0.897(0.002) 0.911(0.003) 

 unseen target 

MGraphDTA_P 0.703(0.018) 0.748(0.008) 0.778(0.002) 0.819(0.006) 

E-DISMGraphDTA_P 0.748(0.017) 0.786(0.013) 0.801(0.004) 0.841(0.005) 

MolTrans 0.664(0.006) 0.711(0.014) 0.692(0.003) 0.747(0.004) 

E-DISMolTrans 0.692(0.007) 0.741(0.012) 0.721(0.005) 0.776(0.016) 

DrugBAN 0.668(0.004) 0.698(0.007) 0.675(0.016) 0.726(0.012) 

E-DISDrugBAN 0.688(0.023) 0.712(0.023) 0.703(0.004) 0.761(0.005) 

 unseen drug and target 

MGraphDTA_P 0.643(0.014) 0.679(0.018) 0.669(0.003) 0.495(0.009) 

E-DISMGraphDTA_P 0.694(0.005) 0.733(0.004) 0.703(0.008) 0.535(0.009) 

MolTrans 0.601(0.010) 0.647(0.009) 0.613(0.003) 0.457(0.007) 

E-DISMolTrans 0.630(0.005) 0.682(0.006) 0.643(0.002) 0.500(0.011) 

DrugBAN 0.633(0.009) 0.681(0.011) 0.627(0.006) 0.456(0.011) 

E-DISDrugBAN 0.662(0.011) 0.716(0.010) 0.646(0.008) 0.507(0.009) 
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Table 5. Performance comparison of E-DIS, BAT and CDAN on the BindingDB and BIOSNAP 

datasets with cluster-based split (Best, Second Best).  

  BindingDB BIOSNAP 

 Method AUROC AUPRC AUROC AUPRC 

MolTrans 0.565(0.004) 0.520(0.011) 0.614(0.008) 0.607(0.010) 

BATMolTrans 0.594(0.007) 0.605(0.009) 0.628(0.003) 0.649(0.037) 

CDANMolTrans 0.606(0.012) 0.566(0.027) 0.625(0.004) 0.638(0.020) 

E-DISMolTrans 0.618(0.004) 0.601(0.042) 0.656(0.011) 0.691(0.017) 

DrugBAN 0.571(0.013) 0.526(0.007) 0.624(0.009) 0.605(0.009) 

BATDrugBAN 0.587(0.015) 0.573(0.021) 0.648(0.008) 0.670(0.011) 

CDANDrugBAN 0.604(0.014) 0.558(0.020) 0.682(0.012) 0.721(0.011) 

E-DISDrugBAN 0.611(0.008) 0.609(0.027) 0.660(0.006) 0.690(0.010) 

MGraphDTA_P 0.601(0.009) 0.549(0.012) 0.690(0.023) 0.683(0.021) 

BATMGraphDTA_P 0.624(0.021) 0.568(0.021) 0.714(0.016) 0.724(0.015) 

CDANMGraphDTA_P 0.617(0.014) 0.585(0.025) 0.693(0.003) 0.696(0.004) 

E-DISMGraphDTA_P 0.630(0.004) 0.601(0.011) 0.721(0.004) 0.732(0.004) 
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